cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348551 Heinz numbers of integer partitions whose mean is not an integer.

This page as a plain text file.
%I A348551 #13 Nov 20 2021 23:47:44
%S A348551 1,6,12,14,15,18,20,24,26,33,35,36,38,40,42,44,45,48,50,51,52,54,56,
%T A348551 58,60,63,65,66,69,70,72,74,75,76,77,80,86,92,93,95,96,102,104,106,
%U A348551 108,112,114,117,119,120,122,123,124,126,130,132,135,136,140,141,142
%N A348551 Heinz numbers of integer partitions whose mean is not an integer.
%C A348551 Equivalently, partitions whose length does not divide their sum.
%C A348551 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A348551 The terms and their prime indices begin:
%e A348551    1: {}
%e A348551    6: {1,2}
%e A348551   12: {1,1,2}
%e A348551   14: {1,4}
%e A348551   15: {2,3}
%e A348551   18: {1,2,2}
%e A348551   20: {1,1,3}
%e A348551   24: {1,1,1,2}
%e A348551   26: {1,6}
%e A348551   33: {2,5}
%e A348551   35: {3,4}
%e A348551   36: {1,1,2,2}
%e A348551   38: {1,8}
%e A348551   40: {1,1,1,3}
%e A348551   42: {1,2,4}
%e A348551   44: {1,1,5}
%e A348551   45: {2,2,3}
%e A348551   48: {1,1,1,1,2}
%p A348551 q:= n-> (l-> nops(l)=0 or irem(add(i, i=l), nops(l))>0)(map
%p A348551         (i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])):
%p A348551 select(q, [$1..142])[];  # _Alois P. Heinz_, Nov 19 2021
%t A348551 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A348551 Select[Range[100],!IntegerQ[Mean[primeMS[#]]]&]
%Y A348551 A version counting nonempty subsets is A000079 - A051293.
%Y A348551 A version counting factorizations is A001055 - A326622.
%Y A348551 A version counting compositions is A011782 - A271654.
%Y A348551 A version for prime factors is A175352, complement A078175.
%Y A348551 A version for distinct prime factors A176587, complement A078174.
%Y A348551 The complement is A316413, counted by A067538, strict A102627.
%Y A348551 The geometric version is the complement of A326623.
%Y A348551 The conjugate version is the complement of A326836.
%Y A348551 These partitions are counted by A349156.
%Y A348551 A000041 counts partitions.
%Y A348551 A001222 counts prime factors with multiplicity.
%Y A348551 A018818 counts partitions into divisors, ranked by A326841.
%Y A348551 A143773 counts partitions into multiples of the length, ranked by A316428.
%Y A348551 A236634 counts unbalanced partitions.
%Y A348551 A047993 counts balanced partitions, ranked by A106529.
%Y A348551 A056239 adds up prime indices, row sums of A112798.
%Y A348551 A326567/A326568 gives the mean of prime indices, conjugate A326839/A326840.
%Y A348551 A327472 counts partitions not containing their mean, complement A237984.
%Y A348551 Cf. A067539, A096199, A098743, A175397, A175761, A289508, A289509, A290103, A326028, A326645, A326837.
%K A348551 nonn
%O A348551 1,2
%A A348551 _Gus Wiseman_, Nov 14 2021