This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348551 #13 Nov 20 2021 23:47:44 %S A348551 1,6,12,14,15,18,20,24,26,33,35,36,38,40,42,44,45,48,50,51,52,54,56, %T A348551 58,60,63,65,66,69,70,72,74,75,76,77,80,86,92,93,95,96,102,104,106, %U A348551 108,112,114,117,119,120,122,123,124,126,130,132,135,136,140,141,142 %N A348551 Heinz numbers of integer partitions whose mean is not an integer. %C A348551 Equivalently, partitions whose length does not divide their sum. %C A348551 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A348551 The terms and their prime indices begin: %e A348551 1: {} %e A348551 6: {1,2} %e A348551 12: {1,1,2} %e A348551 14: {1,4} %e A348551 15: {2,3} %e A348551 18: {1,2,2} %e A348551 20: {1,1,3} %e A348551 24: {1,1,1,2} %e A348551 26: {1,6} %e A348551 33: {2,5} %e A348551 35: {3,4} %e A348551 36: {1,1,2,2} %e A348551 38: {1,8} %e A348551 40: {1,1,1,3} %e A348551 42: {1,2,4} %e A348551 44: {1,1,5} %e A348551 45: {2,2,3} %e A348551 48: {1,1,1,1,2} %p A348551 q:= n-> (l-> nops(l)=0 or irem(add(i, i=l), nops(l))>0)(map %p A348551 (i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])): %p A348551 select(q, [$1..142])[]; # _Alois P. Heinz_, Nov 19 2021 %t A348551 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A348551 Select[Range[100],!IntegerQ[Mean[primeMS[#]]]&] %Y A348551 A version counting nonempty subsets is A000079 - A051293. %Y A348551 A version counting factorizations is A001055 - A326622. %Y A348551 A version counting compositions is A011782 - A271654. %Y A348551 A version for prime factors is A175352, complement A078175. %Y A348551 A version for distinct prime factors A176587, complement A078174. %Y A348551 The complement is A316413, counted by A067538, strict A102627. %Y A348551 The geometric version is the complement of A326623. %Y A348551 The conjugate version is the complement of A326836. %Y A348551 These partitions are counted by A349156. %Y A348551 A000041 counts partitions. %Y A348551 A001222 counts prime factors with multiplicity. %Y A348551 A018818 counts partitions into divisors, ranked by A326841. %Y A348551 A143773 counts partitions into multiples of the length, ranked by A316428. %Y A348551 A236634 counts unbalanced partitions. %Y A348551 A047993 counts balanced partitions, ranked by A106529. %Y A348551 A056239 adds up prime indices, row sums of A112798. %Y A348551 A326567/A326568 gives the mean of prime indices, conjugate A326839/A326840. %Y A348551 A327472 counts partitions not containing their mean, complement A237984. %Y A348551 Cf. A067539, A096199, A098743, A175397, A175761, A289508, A289509, A290103, A326028, A326645, A326837. %K A348551 nonn %O A348551 1,2 %A A348551 _Gus Wiseman_, Nov 14 2021