This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348552 #5 Nov 03 2021 09:08:29 %S A348552 0,1,1,2,2,4,5,7,8,12,14,19,23,31,36,46,55,69,83,100,122,144,175,203, %T A348552 249,284,348,393,484,536,661,725,898,975,1208,1297,1614,1715,2136, %U A348552 2251,2812,2939,3674,3813,4779,4920,6172,6315,7943,8070,10156,10263,12944 %N A348552 Number of integer partitions of n with the same alternating product as alternating sum. %C A348552 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. In the case of a partition, this equals the number of odd parts in the conjugate partition. %C A348552 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %e A348552 The a(1) = 1 through a(9) = 12 partitions: %e A348552 1 2 3 4 5 6 7 8 9 %e A348552 111 211 221 42 322 332 333 %e A348552 311 222 331 422 441 %e A348552 11111 411 511 611 522 %e A348552 21111 22111 4211 711 %e A348552 31111 22211 22221 %e A348552 1111111 41111 32211 %e A348552 2111111 33111 %e A348552 51111 %e A348552 2211111 %e A348552 3111111 %e A348552 111111111 %e A348552 For example, we have 3 - 2 + 2 - 1 + 1 = 3 / 2 * 2 / 1 * 1 = 3, so the partition (3,2,2,1,1) is counted under a(9). %t A348552 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A348552 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A348552 Table[Length[Select[IntegerPartitions[n],altprod[#]==ats[#]&]],{n,0,30}] %Y A348552 The version for reverse-alternating sum (or product, or both) is A025065. %Y A348552 Dominated by A347446. %Y A348552 A000041 counts partitions with alternating sum 0. %Y A348552 A027187 counts partitions of even length. %Y A348552 A027193 counts partitions of odd length, ranked by A026424. %Y A348552 A097805 counts compositions by sum and alternating sum. %Y A348552 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A348552 A119620 counts partitions with alternating product 1, ranked by A028982. %Y A348552 A124754 gives alternating sums of standard compositions. %Y A348552 A277103 counts partitions with the same alternating sum as their conjugate. %Y A348552 A345927 gives alternating sums of binary expansions. %Y A348552 Cf. A000070, A000097, A001700, A025047, A236913, A325534, A325535, A339846, A344607, A345196, A347443, A347448. %K A348552 nonn %O A348552 0,4 %A A348552 _Gus Wiseman_, Oct 30 2021