This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348556 #63 Feb 24 2022 12:07:02 %S A348556 15,30,31,47,60,61,62,63,79,94,95,111,120,121,122,123,124,125,126,127, %T A348556 143,158,159,175,188,189,190,191,207,222,223,239,240,241,242,243,244, %U A348556 245,246,247,248,249,250,251,252,253,254,255,271,286,287,303,316,317,318 %N A348556 Binary expansion contains 4 adjacent 1's. %C A348556 For k > 0, each term m = 2^(k+3) - 1 is the end of a run of A083593(k-1) consecutive terms. For k = 4, from a(13) = 120 up to a(20) = 2^7-1 = 127, there are A083593(3) = 8 consecutive terms corresponding to 1111000, 1111001, 1111010, 1111011, 1111100, 1111101, 111110 and 1111111. - _Bernard Schott_, Feb 20 2022 %H A348556 Michel Marcus, <a href="/A348556/b348556.txt">Table of n, a(n) for n = 1..10000</a> %H A348556 <a href="/index/Ar#2-automatic">Index entries for 2-automatic sequences</a>. %F A348556 a(n) ~ n. %F A348556 a(n+1) <= a(n) + 16. %p A348556 q:= n-> verify([1$4], Bits[Split](n), 'sublist'): %p A348556 select(q, [$0..400])[]; # _Alois P. Heinz_, Oct 22 2021 %t A348556 Select[Range[300], StringContainsQ[IntegerString[#, 2], "1111"] &] (* _Amiram Eldar_, Oct 22 2021 *) %o A348556 (PARI) is(n)=n=bitand(n,n<<2); !!bitand(n,n<<1); %o A348556 (Python) %o A348556 def ok(n): return "1111" in bin(n) %o A348556 print([k for k in range(319) if ok(k)]) # _Michael S. Branicky_, Oct 22 2021 %Y A348556 Binary expansion contains k adjacent 1s: A000027 (1), A004780 (2), A004781 (3), this sequence (4). %Y A348556 Cf. A006520, A083593. %Y A348556 Subsequences: A110286, A195744. %K A348556 nonn,base,easy %O A348556 1,1 %A A348556 _Charles R Greathouse IV_, Oct 22 2021