This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348558 #21 May 28 2023 14:39:58 %S A348558 31,41,61,71,101,131,151,181,191,2131,2141,2161,3121,3181,3191,5101, %T A348558 5171,6101,6121,6131,6151,7121,7151,8101,8161,8171,8191,9151,9161, %U A348558 9181,10141,10151,10181,12101,12161,13121,13151,13171,15101,15121,15131,15161,16141 %N A348558 Primes where every other digit is 1 starting with the rightmost digit, and no other digit is 1. %H A348558 Michael S. Branicky, <a href="/A348558/b348558.txt">Table of n, a(n) for n = 1..10000</a> %t A348558 Select[Prime@Range@10000,(n=#;s={EvenQ,OddQ};t=Take[IntegerDigits@n,{#}]&/@Select[Range@i,#]&/@If[EvenQ[i=IntegerLength@n],s,Reverse@s];Union@Flatten@First@t=={1}&&FreeQ[Flatten@Last@t,1])&] (* _Giorgos Kalogeropoulos_, Oct 22 2021 *) %t A348558 eod1Q[p_]:=Module[{r=Reverse[IntegerDigits[p]]},Union[Take[r,{1,-1,2}]]=={1}&&FreeQ[ Take[ r,{2,-1,2}],1]]; Select[Prime[Range[2000]],eod1Q] (* _Harvey P. Dale_, May 28 2023 *) %o A348558 (Python) %o A348558 from sympy import primerange as primes %o A348558 def ok(p): %o A348558 s = str(p) %o A348558 if not all(s[i] == '1' for i in range(-1, -len(s)-1, -2)): return False %o A348558 return all(s[i] != '1' for i in range(-2, -len(s)-1, -2)) %o A348558 print(list(filter(ok, primes(1, 16142)))) # _Michael S. Branicky_, Oct 22 2021 %o A348558 (Python) # faster version for generating large initial segments of sequence %o A348558 from sympy import isprime %o A348558 from itertools import product %o A348558 def eo1(maxdigits): # generator for every other digit is 1, no other 1's %o A348558 yield 1 %o A348558 for d in range(2, maxdigits+1): %o A348558 if d%2 == 0: %o A348558 for f in "23456789": %o A348558 f1 = f + "1" %o A348558 for p in product("023456789", repeat=(d-1)//2): %o A348558 yield int(f1 + "".join(p[i]+"1" for i in range(len(p)))) %o A348558 else: %o A348558 for p in product("023456789", repeat=(d-1)//2): %o A348558 yield int("1" + "".join(p[i]+"1" for i in range(len(p)))) %o A348558 print(list(filter(isprime, eo1(5)))) # _Michael S. Branicky_, Oct 22 2021 %o A348558 (Magma) f1:=func<n|forall{i:i in [1..#Intseq(n) by 2]| Intseq(n)[i] eq 1}>; fc:=func<n|forall{i:i in [2..#Intseq(n) by 2]| Intseq(n)[i] ne 1}>; [p:p in PrimesUpTo(17000)|f1(p) and fc(p)]; // _Marius A. Burtea_, Oct 22 2021 %Y A348558 Cf. A000040, A348559, A348560, A348561. %K A348558 nonn,base %O A348558 1,1 %A A348558 _Lars Blomberg_, Oct 22 2021