A348570 Positive integers which apparently never result in a palindrome under repeated applications of the function f(x) = x + (x with digits in Zeckendorf representation reversed). Zeckendorf representation analog of Lychrel numbers.
59, 61, 69, 75, 77, 100, 105, 113, 115, 122, 128, 130, 131, 135, 136, 140, 142, 143, 148, 151, 153, 160, 162, 163, 166, 172, 177, 180, 183, 188, 191, 192, 196, 198, 200, 209, 210, 212, 215, 222, 223, 229, 230, 231, 237, 240, 249, 250, 257, 258, 263, 264, 266
Offset: 1
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
- C. Ahlbach, J. Usatine, C. Frougny, and N. Pippenger, Efficient algorithms for Zeckendorf arithmetic, Fibonacci Quart. 51, no. 3 (2013), 249-255.
Crossrefs
Programs
-
Python
# Using functions NumToFib and RevFibToNum from A349238. n, a = 0, 0 while n < 53: a += 1 aa, sa = a, NumToFib(a) ar, s = RevFibToNum(sa), 0 while aa != ar and s < 10000: s, aa = s+1, aa+ar sa = NumToFib(aa) ar = RevFibToNum(sa) if aa != ar: n += 1 print(a, end = ", ")
Comments