A348581 a(n) is the least factor among all the products A307720(k) * A307720(k+1) equal to n.
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 4, 3, 2, 1, 3, 5, 2, 3, 4, 1, 5, 1, 4, 3, 2, 5, 4, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 6, 7, 5, 3, 4, 1, 6, 5, 7, 3, 2, 1, 6, 1, 2, 7, 8, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 5, 4, 7, 6, 1, 8, 9, 2, 1, 7, 5, 2, 3
Offset: 1
Keywords
Examples
For n = 6: - we have the following products equal to 6: A307720(7) * A307720(8) = 3 * 2 = 6 A307720(12) * A307720(13) = 2 * 3 = 6 A307720(13) * A307720(14) = 3 * 2 = 6 A307720(14) * A307720(15) = 2 * 3 = 6 A307720(15) * A307720(16) = 3 * 2 = 6 A307720(16) * A307720(17) = 2 * 3 = 6 - the corresponding distinct factors are 2 and 3, - hence a(6) = 2.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, C program for A348581
Programs
-
C
See Links section.
Formula
a(p) = 1 for any prime number p.
a(n) * A348582(n) = n.
Comments