This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348582 #8 Oct 25 2021 11:06:55 %S A348582 1,2,3,2,5,3,7,4,3,5,11,4,13,7,5,8,17,6,19,5,7,11,23,8,5,13,9,7,29,6, %T A348582 31,8,11,17,7,9,37,19,13,8,41,7,43,11,9,23,47,8,7,10,17,13,53,9,11,8, %U A348582 19,29,59,10,61,31,9,8,13,11,67,17,23,10,71,9,73,37 %N A348582 a(n) is the greatest factor among all the products A307720(k) * A307720(k+1) equal to n. %C A348582 We know there are n ways to get n as a product of terms A307720(k)*A307720(k+1) for various k's. Look at these 2*n numbers from A307720. Then a(n) is the largest of them. %H A348582 Rémy Sigrist, <a href="/A348582/b348582.txt">Table of n, a(n) for n = 1..10000</a> %H A348582 Rémy Sigrist, <a href="/A348582/a348582.txt">C program for A348582</a> %F A348582 a(p) = p for any prime number p. %F A348582 a(n) * A348581(n) = n. %e A348582 For n = 6: %e A348582 - we have the following products equal to 6: %e A348582 A307720(7) * A307720(8) = 3 * 2 = 6 %e A348582 A307720(12) * A307720(13) = 2 * 3 = 6 %e A348582 A307720(13) * A307720(14) = 3 * 2 = 6 %e A348582 A307720(14) * A307720(15) = 2 * 3 = 6 %e A348582 A307720(15) * A307720(16) = 3 * 2 = 6 %e A348582 A307720(16) * A307720(17) = 2 * 3 = 6 %e A348582 - the corresponding distinct factors are 2 and 3, %e A348582 - hence a(6) = 3. %o A348582 (C) See Links section. %Y A348582 Cf. A307720, A307730, A348581. %K A348582 nonn %O A348582 1,2 %A A348582 _Rémy Sigrist_ and _N. J. A. Sloane_, Oct 24 2021