This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348591 #42 Jan 27 2022 09:43:05 %S A348591 0,1,0,3,5,3,18,3,52,3,141,3,374,3,984,3,2581,3,6762,3,17708,3,46365, %T A348591 3,121390,3,317808,3,832037,3,2178306,3,5702884,3,14930349,3,39088166, %U A348591 3,102334152,3,267914293,3,701408730,3,1836311900,3,4807526973,3,12586269022,3,32951280096,3,86267571269,3 %N A348591 a(n) = L(n)*L(n+1) mod F(n+2) where F=A000045 is the Fibonacci numbers and L = A000032 is the Lucas numbers. %H A348591 Robert Israel, <a href="/A348591/b348591.txt">Table of n, a(n) for n = 0..4761</a> %H A348591 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-1,3,3,-1,-1). %F A348591 a(n) = 3 if n >= 3 is odd. %F A348591 a(n) = A000045(n+2)-3 if n >= 2 is even. %F A348591 a(n) + a(n+1) - 3*a(n+2) - 3*a(n+3) + a(n+4) + a(n+5) = 0 for n >= 2. %F A348591 G.f.: -x*(2*x^5-5*x^3-x-1)/((x+1)*(x^2+x-1)*(x^2-x-1)). - _Alois P. Heinz_, Jan 26 2022 %e A348591 a(5) = L(5)*L(6) mod F(7) = 11*18 mod 13 = 3. %p A348591 F:= combinat:-fibonacci: %p A348591 L:= n -> F(n-1)+F(n+1): %p A348591 map(n -> L(n)*L(n+1) mod F(n+2), [$0..30]); %t A348591 a[n_] := Mod[LucasL[n] * LucasL[n + 1], Fibonacci[n + 2]]; Array[a, 50, 0] (* _Amiram Eldar_, Jan 26 2022 *) %o A348591 (Python) %o A348591 from gmpy2 import fib, lucas2 %o A348591 def A348591(n): return (lambda x,y:int(x[0]*x[1] % y))(lucas2(n+1),fib(n+2)) # _Chai Wah Wu_, Jan 26 2022 %Y A348591 Cf. A000032, A000045, A215602, A333599, A347861, A348592. %K A348591 nonn,easy %O A348591 0,4 %A A348591 _J. M. Bergot_ and _Robert Israel_, Jan 25 2022