This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348593 #24 Jan 27 2022 21:02:12 %S A348593 1,1,1,2,1,4,1,1,6,7,1,1,8,18,6,1,1,10,34,30,7,1,1,12,55,88,33,8,1,1, %T A348593 14,81,195,145,42,9,1,1,16,112,366,460,184,52,10,1,1,18,148,616,1146, %U A348593 763,248,63,11,1,1,20,189,960,2422,2544,1060,324,75,12,1,1,22,235,1413,4558,6916,4282,1490,413,88,13,1 %N A348593 Triangle read by rows: T(n,m) = Sum_{j=0..min(m,n-m)} C(2j,j)*C(n-2j-1,m-j)*C(n-m,j)/(j+1). %F A348593 G.f.: (1-sqrt(1-4*x^2*y*(1-x*y)/(1-x-x*y)))/(2*x^2*y). %F A348593 Sum_{m>=0} (-1)^m * T(n,m) = A307374(n). - _Alois P. Heinz_, Jan 26 2022 %e A348593 Triangle begins %e A348593 1; %e A348593 1; %e A348593 1, 2; %e A348593 1, 4, 1; %e A348593 1, 6, 7, 1; %e A348593 1, 8, 18, 6, 1; %e A348593 1, 10, 34, 30, 7, 1; %e A348593 1, 12, 55, 88, 33, 8, 1; %o A348593 (Maxima) T(n,m):=sum(binomial(2*j,j)*binomial(n-2*j-1,m-j)*binomial(n-m,j)/(j+1), j,0,min(m,n-m)); %Y A348593 Row sums give A173992. %Y A348593 Cf. A000108, A307374. %K A348593 nonn,tabf %O A348593 0,4 %A A348593 _Vladimir Kruchinin_, Jan 25 2022