This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348594 #15 Jan 26 2022 09:00:25 %S A348594 8,50,1250,1800,2450,9800,14450,20000,24200,101250,105800,135200, %T A348594 162450,168200,204800,304200,336200,451250,480200,490050,530450, %U A348594 696200,924800,966050,1008200,1125000,1155200,1428050,1805000,2332800,2420000,2576450,2761250,2832200 %N A348594 Numbers m such that m^2 + 1 = p*q with p, q primes and m = (p + q)/2 - 1. %C A348594 Subsequence of A085722. %C A348594 The corresponding pairs (p, q) of the sequence are (5, 13), (41, 61), (1201, 1301), (1741, 1861), (2381, 2521), (9661, 9941), (14281, 14621), (19801, 20201), (23981, 24421), (100801, 101701), ... %C A348594 Property: %C A348594 a(n) = 2* A109306(n)^2 and a(n) == 0 (mod 50) for n > 1. Proof: %C A348594 From the relations: %C A348594 (1) m^2 + 1 = p*q %C A348594 (2) (p + q)/2 = m + 1 %C A348594 We obtain: %C A348594 (3) p = m + 1 - sqrt(8*m)/2 %C A348594 (4) q = m + 1 + sqrt(8*m)/2 %C A348594 with m = 2*k^2 we obtain: %C A348594 (5) p = k^2 + (k-1)^2 %C A348594 (6) q = k^2 + (k+1)^2 %C A348594 For n > 1, A109306(n) == 0 (mod 5) => 2*A109306(n)^2 == 0 (mod 50). %e A348594 50 = 2*5^2 is in the sequence because 50^2 + 1 = 41*61 with 50 = (41 + 61)/2 - 1. %p A348594 with(numtheory):nn:=250:printf(`%d, `,8): %p A348594 for k from 0 to nn do: %p A348594 n:=50*k^2:d:=factorset(n^2+1): %p A348594 if bigomega(n^2+1)=2 and (d[1]+d[2])/2 - 1 = n %p A348594 then %p A348594 printf(`%d, `,n): %p A348594 else %p A348594 fi: %p A348594 od: %t A348594 q[n_] := Module[{f = FactorInteger[n^2 + 1]}, f[[;; , 2]] == {1, 1} && f[[1, 1]] + f[[2, 1]] == 2*n + 2]; Select[Range[3*10^5], q] (* _Amiram Eldar_, Jan 26 2022 *) %o A348594 (PARI) isok(m) = my(x); if (bigomega(x=m^2+1)==2, my(f=factor(x)); (f[1,1]+f[2,1] == 2*(m+1))); \\ _Michel Marcus_, Jan 26 2022 %Y A348594 Cf. A014442, A085722, A089120, A109306, A144255. %K A348594 nonn %O A348594 1,1 %A A348594 _Michel Lagneau_, Jan 26 2022