This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348595 #15 Aug 16 2023 08:22:03 %S A348595 1,1,4,1,8,28,1,12,64,212,1,16,116,520,1676,1,20,184,1052,4288,13604, %T A348595 1,24,268,1872,9316,35784,112380,1,28,368,3044,17976,81708,301440, %U A348595 940020,1,32,484,4632,31740,167376,713940,2558280,7936620,1,36,616,6700,52336,314932,1531000,6231100,21842560,67494980 %N A348595 Triangle read by rows: Number of walks from (0,0) to (3n,3k) on the square lattice with up and right steps where squares (x,y)=(1,1) mod 3 or (x,y)=(2,2) mod 3 are not entered. %H A348595 R. J. Mathar, <a href="/A348595/a348595.pdf">Walks of up and right steps in the square lattice with blocked squares</a> %F A348595 G.f.: (1-u*v)/(1-u-v-3*u*v) . %e A348595 The array is symmetric; the non-redundant triangular part starts %e A348595 1 %e A348595 1 4 %e A348595 1 8 28 %e A348595 1 12 64 212 %e A348595 1 16 116 520 1676 %e A348595 1 20 184 1052 4288 13604 %e A348595 1 24 268 1872 9316 35784 112380 %e A348595 1 28 368 3044 17976 81708 301440 940020 %e A348595 1 32 484 4632 31740 167376 713940 2558280 7936620 %p A348595 A348595 := proc(n,k) %p A348595 g := (1-u*v)/(1-u-v-3*u*v) ; %p A348595 coeftayl(%,u=0,n) ; %p A348595 coeftayl(%,v=0,k) ; %p A348595 end proc: %p A348595 seq(seq( A348595(n,k),k=0..n),n=0..10) ; %t A348595 T[n_, k_] := Module[{u, v}, SeriesCoefficient[(1 - u v)/(1 - u - v - 3 u v), {u, 0, n}] // SeriesCoefficient[#, {v, 0, k}]&]; %t A348595 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 16 2023 *) %Y A348595 Cf. A085363 (diagonal), A307584 (walks to (3n+1,3k)) %K A348595 nonn,tabl,easy %O A348595 0,3 %A A348595 _R. J. Mathar_, Jan 26 2022