This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348598 #54 Jun 22 2022 09:25:22 %S A348598 17,1297,90001,1008017,147457,2421137,15952037,1378277,7203857, %T A348598 107122501,164968337,34503877,38688401,4851958337,1075577617, %U A348598 197121601,1044582401,315559697,70924211857,730296577,20705483237,15103426817,197740302401,4587352901,155964965777 %N A348598 Least prime p of the form k^2+1 such that p == A002496(n) (mod A002496(n+1)) with p>A002496(n), or 0 if no such p exists. %C A348598 a(n) == 1, 5 (mod 16). %C A348598 Conjecture: Consider the smallest prime p of the form k^2+1 such that p is congruent to A002496(n) modulo q, q prime of the form m^2+1 > A002496(n). Then q = A002496(n+1). %C A348598 Corollary: For any pair (A002496(n), A002496(n+1)), there exist two integers m, k such that A002496(m) = A002496(n) + k*A002496(n+1), m>n+1 and n=1,2,3,... %C A348598 Examples (see A352582): %C A348598 A002496(3) = A002496(1) + 3*A002496(2), %C A348598 A002496(11) = A002496(2) + 76*A002496(3), %C A348598 A002496(49) = A002496(3) + 2432*A002496(4), %C A348598 A002496(113) = A002496(4) + 9980*A002496(5). %H A348598 Michel Lagneau, <a href="/A348598/a348598.pdf">a(n),n=1..90</a> %e A348598 a(2) = 1297 because 1297 == A002496(2) (mod A002496(3)) => 1297 == 5 (mod 17). %p A348598 with(numtheory):T:=array(1..30000):k:=0: %p A348598 nn:=500000: %p A348598 for m from 1 to nn do: %p A348598 if isprime(m^2+1) %p A348598 then %p A348598 k:=k+1:T[k]:=m^2+1: %p A348598 else %p A348598 fi: %p A348598 od: %p A348598 for n from 1 to 32 do: %p A348598 ii:=0:r:=T[n]:q:=T[n+1]: %p A348598 for i from 1 to k while(ii=0) do: %p A348598 p:=T[i]:r1:=irem(p,q): %p A348598 if r1=r and p>q %p A348598 then %p A348598 ii:=1: printf(`%d, `,p) %p A348598 else %p A348598 fi: %p A348598 od: %p A348598 od: %Y A348598 Cf. A002496, A352582. %K A348598 nonn %O A348598 1,1 %A A348598 _Michel Lagneau_, Mar 20 2022