This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348600 #9 Jan 27 2022 21:00:42 %S A348600 1,0,1,0,1,1,0,1,4,1,0,1,13,6,1,0,1,62,39,9,1,0,1,275,488,77,11,1,0,1, %T A348600 1710,8116,1145,130,14,1,0,1,12061,216432,29958,2415,196,16,1,0,1, %U A348600 93706,9512947,2026922,78265,4434,276,19,1 %N A348600 Triangle read by rows: T(n,k) is the number of (unlabeled) connected graphs with n nodes and metric dimension k, 0 <= k < n. %H A348600 Gary Chartrand, Linda Eroh, Mark A. Johnson, and Ortrud R. Oellermann, <a href="https://doi.org/10.1016/S0166-218X(00)00198-0">Resolvability in graphs and the metric dimension of a graph</a>, Discrete Applied Mathematics 105 (2000), 99-113. %H A348600 Richard C. Tillquist, Rafael M. Frongillo, and Manuel E. Lladser, <a href="https://arxiv.org/abs/2104.07201">Getting the lay of the land in discrete space: a survey of metric dimension and its applications</a>, arXiv:2104.07201 [math.CO], 2021. %H A348600 Wikipedia, <a href="https://en.wikipedia.org/wiki/Metric_dimension_(graph_theory)">Metric dimension</a> %F A348600 T(n,1) = 1 for n >= 2, because the only graphs with metric dimension 1 are the paths of positive lengths (Chartrand et al. 2000). %F A348600 T(n,n-2) = A047209(n-2) = floor(5*n/2-6) for n >= 3 (follows from the complete description of graphs with n nodes and metric dimension n-2 by Chartrand et al. 2000). %F A348600 T(n,n-1) = 1 for n >= 1 , because the only graph with n nodes and metric dimension n-1 is the complete graph (Chartrand et al. 2000). %e A348600 Triangle begins: %e A348600 n\k| 0 1 2 3 4 5 6 7 8 9 %e A348600 ---+------------------------------------------------ %e A348600 1 | 1 %e A348600 2 | 0 1 %e A348600 3 | 0 1 1 %e A348600 4 | 0 1 4 1 %e A348600 5 | 0 1 13 6 1 %e A348600 6 | 0 1 62 39 9 1 %e A348600 7 | 0 1 275 488 77 11 1 %e A348600 8 | 0 1 1710 8116 1145 130 14 1 %e A348600 9 | 0 1 12061 216432 29958 2415 196 16 1 %e A348600 10 | 0 1 93706 9512947 2026922 78265 4434 276 19 1 %Y A348600 Cf. A047209, A303735. %Y A348600 Row sums: A001349. %K A348600 nonn,tabl %O A348600 1,9 %A A348600 _Pontus von Brömssen_, Jan 26 2022