cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348607 Decimal expansion of BesselJ(1,2).

This page as a plain text file.
%I A348607 #15 Dec 24 2024 22:11:54
%S A348607 5,7,6,7,2,4,8,0,7,7,5,6,8,7,3,3,8,7,2,0,2,4,4,8,2,4,2,2,6,9,1,3,7,0,
%T A348607 8,6,9,2,0,3,0,2,6,8,9,7,1,9,6,7,5,4,4,0,1,2,1,1,3,9,0,2,0,7,6,4,0,8,
%U A348607 7,1,1,6,2,8,9,6,1,2,1,8,4,9,4,8,3,9,9
%N A348607 Decimal expansion of BesselJ(1,2).
%F A348607 Equals Sum_{k>=0} (-1)^k/(k!*(k+1)!).
%e A348607 0.5767248077568733872...
%t A348607 RealDigits[BesselJ[1, 2], 10, 100][[1]] (* _Amiram Eldar_, Oct 25 2021 *)
%o A348607 (Sage)
%o A348607 bessel_J(1, 2).n(digits=100)
%o A348607 (PARI) besselj(1, 2) \\ _Michel Marcus_, Oct 25 2021
%Y A348607 Cf. A010790, A054687, A058798, A058797, A133920, A245308, A296168, A301484, A318224.
%Y A348607 Bessel function values: A334380 (J(0,1)), A091681 (J(0,2)), A334383 (J(0,sqrt(2))), this sequence (J(1,2)), A197036 (I(0,1)), A070910 (I(0,2)), A334381 (I(0,sqrt(2))), A096789 (I(1,2)).
%K A348607 nonn,cons
%O A348607 0,1
%A A348607 _Dumitru Damian_, Oct 25 2021