A348609 Numbers with a separable factorization without an alternating permutation.
216, 270, 324, 378, 432, 486, 540, 594, 640, 648, 702, 756, 768, 810, 864, 896, 918, 960, 972, 1024, 1026, 1080, 1134, 1152, 1188, 1242, 1280, 1296, 1344, 1350, 1404, 1408, 1458, 1500, 1512, 1536, 1566, 1620, 1664, 1674, 1728, 1750, 1782, 1792, 1836, 1890
Offset: 1
Keywords
Examples
The terms and their prime factorizations begin: 216 = 2*2*2*3*3*3 270 = 2*3*3*3*5 324 = 2*2*3*3*3*3 378 = 2*3*3*3*7 432 = 2*2*2*2*3*3*3 486 = 2*3*3*3*3*3 540 = 2*2*3*3*3*5 594 = 2*3*3*3*11 640 = 2*2*2*2*2*2*2*5 648 = 2*2*2*3*3*3*3 702 = 2*3*3*3*13 756 = 2*2*3*3*3*7 768 = 2*2*2*2*2*2*2*2*3 810 = 2*3*3*3*3*5 864 = 2*2*2*2*2*3*3*3
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={}; wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; Select[Range[1000],Function[n,Select[facs[n],sepQ[#]&&Select[Permutations[#],wigQ]=={}&]!={}]]
Comments