This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348611 #17 Nov 12 2021 22:31:21 %S A348611 1,1,1,1,1,3,1,3,1,3,1,6,1,3,3,4,1,6,1,6,3,3,1,14,1,3,3,6,1,13,1,7,3, %T A348611 3,3,17,1,3,3,14,1,13,1,6,6,3,1,29,1,6,3,6,1,14,3,14,3,3,1,36,1,3,6, %U A348611 14,3,13,1,6,3,13,1,45,1,3,6,6,3,13,1,29,4,3 %N A348611 Number of ordered factorizations of n with no adjacent equal factors. %C A348611 First differs from A348610 at a(24) = 14, A348610(24) = 12. %C A348611 An ordered factorization of n is a finite sequence of positive integers > 1 with product n. %C A348611 In analogy with Carlitz compositions, these may be called Carlitz ordered factorizations. %F A348611 a(n) = A074206(n) - A348616(n). %e A348611 The a(n) ordered factorizations without adjacent equal factors for n = 1, 6, 12, 16, 24, 30, 32, 36 are: %e A348611 () 6 12 16 24 30 32 36 %e A348611 2*3 2*6 2*8 3*8 5*6 4*8 4*9 %e A348611 3*2 3*4 8*2 4*6 6*5 8*4 9*4 %e A348611 4*3 2*4*2 6*4 10*3 16*2 12*3 %e A348611 6*2 8*3 15*2 2*16 18*2 %e A348611 2*3*2 12*2 2*15 2*8*2 2*18 %e A348611 2*12 3*10 4*2*4 3*12 %e A348611 2*3*4 2*3*5 2*3*6 %e A348611 2*4*3 2*5*3 2*6*3 %e A348611 2*6*2 3*2*5 2*9*2 %e A348611 3*2*4 3*5*2 3*2*6 %e A348611 3*4*2 5*2*3 3*4*3 %e A348611 4*2*3 5*3*2 3*6*2 %e A348611 4*3*2 6*2*3 %e A348611 6*3*2 %e A348611 2*3*2*3 %e A348611 3*2*3*2 %e A348611 Thus, of total A074206(12) = 8 ordered factorizations of 12, only factorizations 2*2*3 and 3*2*2 (see A348616) are not included in this count, therefore a(12) = 6. - _Antti Karttunen_, Nov 12 2021 %t A348611 ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]; %t A348611 antirunQ[y_]:=Length[y]==Length[Split[y]] %t A348611 Table[Length[Select[ordfacs[n],antirunQ]],{n,100}] %o A348611 (PARI) A348611(n, e=0) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d!=e), s += A348611(n/d, d))); (s)); \\ _Antti Karttunen_, Nov 12 2021 %Y A348611 The additive version (compositions) is A003242, complement A261983. %Y A348611 The additive alternating version is A025047, ranked by A345167. %Y A348611 Factorizations without a permutation of this type are counted by A333487. %Y A348611 As compositions these are ranked by A333489, complement A348612. %Y A348611 Factorizations with a permutation of this type are counted by A335434. %Y A348611 The non-alternating additive version is A345195, ranked by A345169. %Y A348611 The alternating case is A348610, which is dominated at positions A122181. %Y A348611 The complement is counted by A348616. %Y A348611 A001055 counts factorizations, strict A045778, ordered A074206. %Y A348611 A325534 counts separable partitions, ranked by A335433. %Y A348611 A335452 counts anti-run permutations of prime indices, complement A336107. %Y A348611 A339846 counts even-length factorizations. %Y A348611 A339890 counts odd-length factorizations. %Y A348611 A348613 counts non-alternating ordered factorizations. %Y A348611 Cf. A001250, A138364, A336103, A347050, A347438, A347463, A347466, A347706, A348379, A348383. %K A348611 nonn %O A348611 1,6 %A A348611 _Gus Wiseman_, Nov 07 2021