This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348613 #9 Nov 04 2021 06:26:18 %S A348613 0,0,0,1,0,0,0,1,1,0,0,2,0,0,0,4,0,2,0,2,0,0,0,8,1,0,1,2,0,2,0,9,0,0, %T A348613 0,11,0,0,0,8,0,2,0,2,2,0,0,25,1,2,0,2,0,8,0,8,0,0,0,16,0,0,2,20,0,2, %U A348613 0,2,0,2,0,43,0,0,2,2,0,2,0,25,4,0,0,16,0 %N A348613 Number of non-alternating ordered factorizations of n. %C A348613 An ordered factorization of n is a finite sequence of positive integers > 1 with product n. %C A348613 A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. %H A348613 Wikipedia, <a href="https://en.wikipedia.org/wiki/Alternating_permutation">Alternating permutation</a> %e A348613 The a(n) ordered factorizations for n = 4, 12, 16, 24, 32, 36: %e A348613 2*2 2*2*3 4*4 2*2*6 2*2*8 6*6 %e A348613 3*2*2 2*2*4 2*3*4 2*4*4 2*2*9 %e A348613 4*2*2 4*3*2 4*4*2 2*3*6 %e A348613 2*2*2*2 6*2*2 8*2*2 3*3*4 %e A348613 2*2*2*3 2*2*2*4 4*3*3 %e A348613 2*2*3*2 2*2*4*2 6*3*2 %e A348613 2*3*2*2 2*4*2*2 9*2*2 %e A348613 3*2*2*2 4*2*2*2 2*2*3*3 %e A348613 2*2*2*2*2 2*3*3*2 %e A348613 3*2*2*3 %e A348613 3*3*2*2 %t A348613 ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]; %t A348613 wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; %t A348613 Table[Length[Select[ordfacs[n],!wigQ[#]&]],{n,100}] %Y A348613 The complementary additive version is A025047, ranked by A345167. %Y A348613 The additive version is A345192, ranked by A345168, without twins A348377. %Y A348613 The complement is counted by A348610. %Y A348613 A001055 counts factorizations, strict A045778, ordered A074206. %Y A348613 A001250 counts alternating permutations. %Y A348613 A339846 counts even-length factorizations. %Y A348613 A339890 counts odd-length factorizations. %Y A348613 A345165 counts partitions without an alternating permutation, ranked by A345171. %Y A348613 A345170 counts partitions with an alternating permutation, ranked by A345172. %Y A348613 A348379 counts factorizations w/ an alternating permutation, with twins A347050. %Y A348613 A348380 counts factorizations w/o an alternating permutation, w/o twins A347706. %Y A348613 A348611 counts anti-run ordered factorizations. %Y A348613 Cf. A038548, A056986, A344614, A344653, A344654, A344740, A347437, A347438, A347463, A348381, A348609. %K A348613 nonn %O A348613 1,12 %A A348613 _Gus Wiseman_, Nov 03 2021