This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348614 #8 Oct 31 2021 01:40:40 %S A348614 0,9,11,14,130,133,135,138,141,143,148,153,155,158,168,177,179,182, %T A348614 188,208,225,227,230,236,248,2052,2057,2059,2062,2066,2069,2071,2074, %U A348614 2077,2079,2084,2089,2091,2094,2098,2101,2103,2106,2109,2111,2120,2129,2131 %N A348614 Numbers k such that the k-th composition in standard order has sum equal to twice its alternating sum. %C A348614 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %C A348614 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. %H A348614 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A348614 The terms together with their binary indices begin: %e A348614 0: () %e A348614 9: (3,1) %e A348614 11: (2,1,1) %e A348614 14: (1,1,2) %e A348614 130: (6,2) %e A348614 133: (5,2,1) %e A348614 135: (5,1,1,1) %e A348614 138: (4,2,2) %e A348614 141: (4,1,2,1) %e A348614 143: (4,1,1,1,1) %e A348614 148: (3,2,3) %e A348614 153: (3,1,3,1) %e A348614 155: (3,1,2,1,1) %e A348614 158: (3,1,1,1,2) %t A348614 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A348614 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A348614 Select[Range[0,1000],Total[stc[#]]==2*ats[stc[#]]&] %Y A348614 The unordered case (partitions) is counted by A000712, reverse A006330. %Y A348614 These compositions are counted by A262977. %Y A348614 Except for 0, a subset of A345917 (which is itself a subset of A345913). %Y A348614 A000346 = even-length compositions with alt sum != 0, complement A001700. %Y A348614 A011782 counts compositions. %Y A348614 A025047 counts wiggly compositions, ranked by A345167. %Y A348614 A034871 counts compositions of 2n with alternating sum 2k. %Y A348614 A097805 counts compositions by alternating (or reverse-alternating) sum. %Y A348614 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A348614 A116406 counts compositions with alternating sum >=0, ranked by A345913. %Y A348614 A138364 counts compositions with alternating sum 0, ranked by A344619. %Y A348614 A345197 counts compositions by length and alternating sum. %Y A348614 Cf. A000984, A002458, A004331, A005810, A224274. %Y A348614 Cf. A008549, A013777, A027306, A058622, A088218, A114121, A120452, A126869, A163493, A294175, A344604. %K A348614 nonn %O A348614 1,2 %A A348614 _Gus Wiseman_, Oct 29 2021