This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348615 #17 Jun 11 2022 11:43:08 %S A348615 0,0,0,2,14,88,598,4496,37550,347008,3527758,39209216,473596070, %T A348615 6182284288,86779569238,1303866853376,20884006863710,355267697410048, %U A348615 6397563946377118,121586922638606336,2432161265800164950,51081039175603191808,1123862030028821404198 %N A348615 Number of non-alternating permutations of {1...n}. %C A348615 A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. %C A348615 Also permutations of {1...n} matching the consecutive patterns (1,2,3) or (3,2,1). Matching only one of these gives A065429. %H A348615 Wikipedia, <a href="https://en.wikipedia.org/wiki/Alternating_permutation">Alternating permutation</a> %F A348615 a(n) = n! - A001250(n). %e A348615 The a(4) = 14 permutations: %e A348615 (1,2,3,4) (3,1,2,4) %e A348615 (1,2,4,3) (3,2,1,4) %e A348615 (1,3,4,2) (3,4,2,1) %e A348615 (1,4,3,2) (4,1,2,3) %e A348615 (2,1,3,4) (4,2,1,3) %e A348615 (2,3,4,1) (4,3,1,2) %e A348615 (2,4,3,1) (4,3,2,1) %p A348615 b:= proc(u, o) option remember; %p A348615 `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u)) %p A348615 end: %p A348615 a:= n-> n!-`if`(n<2, 1, 2)*b(n, 0): %p A348615 seq(a(n), n=0..30); # _Alois P. Heinz_, Nov 04 2021 %t A348615 wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] ==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; %t A348615 Table[Length[Select[Permutations[Range[n]],!wigQ[#]&]],{n,0,6}] %o A348615 (Python) %o A348615 from itertools import accumulate, count, islice %o A348615 def A348615_gen(): # generator of terms %o A348615 yield from (0,0) %o A348615 blist, f = (0,2), 1 %o A348615 for n in count(2): %o A348615 f *= n %o A348615 yield f - (blist := tuple(accumulate(reversed(blist),initial=0)))[-1] %o A348615 A348615_list = list(islice(A348615_gen(),40)) # _Chai Wah Wu_, Jun 09-11 2022 %Y A348615 The complement is counted by A001250, ranked by A333218. %Y A348615 The complementary version for compositions is A025047, ranked by A345167. %Y A348615 A directed version is A065429, complement A049774. %Y A348615 The version for compositions is A345192, ranked by A345168. %Y A348615 The version for ordered factorizations is A348613, complement A348610. %Y A348615 A345165 counts partitions w/o an alternating permutation, ranked by A345171. %Y A348615 A345170 counts partitions w/ an alternating permutation, ranked by A345172. %Y A348615 A348379 counts factorizations with an alternating permutation. %Y A348615 A348380 counts factorizations without an alternating permutation. %Y A348615 Cf. A056986, A102726, A325534, A325535, A344614, A344653, A344654, A347050, A347706, A348377, A348609. %K A348615 nonn %O A348615 0,4 %A A348615 _Gus Wiseman_, Nov 03 2021