This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348616 #8 Dec 04 2021 12:37:13 %S A348616 0,0,0,1,0,0,0,1,1,0,0,2,0,0,0,4,0,2,0,2,0,0,0,6,1,0,1,2,0,0,0,9,0,0, %T A348616 0,9,0,0,0,6,0,0,0,2,2,0,0,19,1,2,0,2,0,6,0,6,0,0,0,8,0,0,2,18,0,0,0, %U A348616 2,0,0,0,31,0,0,2,2,0,0,0,19,4,0,0,8,0,0 %N A348616 Number of ordered factorizations of n with adjacent equal factors. %C A348616 First differs from A348613 at a(24) = 6, A348613(24) = 8. %C A348616 An ordered factorization of n is a finite sequence of positive integers > 1 with product n. %F A348616 a(n) = A074206(n) - A348611(n). %e A348616 The a(n) ordered factorizations with at least one pair of adjacent equal factors for n = 12, 24, 36, 60: %e A348616 2*2*3 2*2*6 6*6 15*2*2 %e A348616 3*2*2 6*2*2 2*2*9 2*2*15 %e A348616 2*2*2*3 3*3*4 2*2*3*5 %e A348616 2*2*3*2 4*3*3 2*2*5*3 %e A348616 2*3*2*2 9*2*2 3*2*2*5 %e A348616 3*2*2*2 2*2*3*3 3*5*2*2 %e A348616 2*3*3*2 5*2*2*3 %e A348616 3*2*2*3 5*3*2*2 %e A348616 3*3*2*2 %e A348616 See also examples in A348611. %t A348616 ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]; %t A348616 antirunQ[y_]:=Length[y]==Length[Split[y]] %t A348616 Table[Length[Select[ordfacs[n],!antirunQ[#]&]],{n,100}] %Y A348616 Positions of 0's are A005117. %Y A348616 Positions of 4's appear to be A030514. %Y A348616 Positions of 2's appear to be A054753. %Y A348616 Positions of 1's appear to be A168363. %Y A348616 The additive version (compositions) is A261983, complement A003242. %Y A348616 Factorizations with a permutation of this type are counted by A333487. %Y A348616 Factorizations without a permutation of this type are counted by A335434. %Y A348616 The complement is counted by A348611. %Y A348616 As compositions these are ranked by A348612, complement A333489. %Y A348616 Dominated by A348613 (non-alternating ordered factorizations). %Y A348616 A001055 counts factorizations, strict A045778, ordered A074206. %Y A348616 A335452 counts anti-run permutations of prime indices, complement A336107. %Y A348616 A339846 counts even-length factorizations. %Y A348616 A339890 counts odd-length factorizations. %Y A348616 Cf. A001250, A025047, A122181, A138364, A347050, A347463, A347706, A348379, A348380, A348382, A348610. %K A348616 nonn %O A348616 1,12 %A A348616 _Gus Wiseman_, Nov 08 2021