cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348639 Number of ways to express n in the form 1 +- 2 +- 3 ... +- n.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 6, 11, 0, 0, 57, 103, 0, 0, 615, 1131, 0, 0, 7209, 13467, 0, 0, 89261, 168515, 0, 0, 1147893, 2183943, 0, 0, 15181540, 29055149, 0, 0, 205171534, 394497990, 0, 0, 2820847321, 5444272739, 0, 0, 39329485312, 76142226498, 0, 0, 554756557011
Offset: 1

Views

Author

Daniel Cortild, Oct 26 2021

Keywords

Comments

a(n) is the coefficient of x^(n*(n+3)/4-1) of Product_{k=2..n} (1+x^k). - Jianing Song, Nov 19 2021

Crossrefs

Programs

  • C
    int solsN(int n, int k, int sum) { if (n == k) return sum == n; return solsN(n, k+1, sum + k + 1) + solsN(n, k+1, sum - k - 1);}
    int getNumber(int n) { return solsN(n, 1, 1); }
    
  • PARI
    list(n) = my(poly=vector(n), v=vector(n)); poly[1]=1; for(k=2, n, poly[k]=poly[k-1]*(1+'x^k)); for(k=1, n, if(k%4==2||k%4==3, v[k]=0, v[k]=polcoeff(poly[k], k*(k+3)/4-1))); v \\ Jianing Song, Nov 19 2021
  • Python
    from functools import cache
    @cache
    def b(t, s, u): # target, sum, upto
        if u == 1: return int(t == s + 1)
        return b(t, s - u, u - 1) + b(t, s + u, u - 1)
    def a(n): return b(n, 0, n)
    print([a(n) for n in range(1, 49)]) # Michael S. Branicky, Oct 29 2021
    

Extensions

a(30)-a(48) from Michael S. Branicky, Oct 29 2021