A348647 Irregular table read by rows; the n-th row contains the lengths of the runs of consecutive terms with the same parity in the n-th row of Pascal's triangle (A007318).
1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 7, 1, 2, 6, 2, 1, 1, 1, 5, 1, 1, 1, 4, 4, 4, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 15, 1, 2, 14, 2, 1, 1, 1, 13, 1, 1, 1, 4, 12, 4, 1, 3, 1, 11, 1, 3, 1
Offset: 0
Examples
Triangle begins: 1; 2; 1, 1, 1; 4; 1, 3, 1; 2, 2, 2; 1, 1, 1, 1, 1, 1, 1; 8; 1, 7, 1; 2, 6, 2; 1, 1, 1, 5, 1, 1, 1; 4, 4, 4; 1, 3, 1, 3, 1, 3, 1; 2, 2, 2, 2, 2, 2, 2; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 16; ...
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..6304 (rows for n = 0..254, flattened)
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
PARI
row(n) = { my (b=binomial(n)%2, r=[], p=1, w=1); for (k=2, #b, if (p==b[k], w++, r=concat(r, w); p=b[k]; w=1)); concat(r, w) }
Comments