cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348647 Irregular table read by rows; the n-th row contains the lengths of the runs of consecutive terms with the same parity in the n-th row of Pascal's triangle (A007318).

Original entry on oeis.org

1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 7, 1, 2, 6, 2, 1, 1, 1, 5, 1, 1, 1, 4, 4, 4, 1, 3, 1, 3, 1, 3, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 15, 1, 2, 14, 2, 1, 1, 1, 13, 1, 1, 1, 4, 12, 4, 1, 3, 1, 11, 1, 3, 1
Offset: 0

Views

Author

Rémy Sigrist, Oct 27 2021

Keywords

Comments

For any n >= 0, the n-th row:
- is palindromic,
- has A038573(n+1) terms,
- has leading term A006519(n+1),
- has central term A080079(n+1).

Examples

			Triangle begins:
    1;
    2;
    1, 1, 1;
    4;
    1, 3, 1;
    2, 2, 2;
    1, 1, 1, 1, 1, 1, 1;
    8;
    1, 7, 1;
    2, 6, 2;
    1, 1, 1, 5, 1, 1, 1;
    4, 4, 4;
    1, 3, 1, 3, 1, 3, 1;
    2, 2, 2, 2, 2, 2, 2;
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
    16;
    ...
		

Crossrefs

Programs

  • PARI
    row(n) = { my (b=binomial(n)%2, r=[], p=1, w=1); for (k=2, #b, if (p==b[k], w++, r=concat(r, w); p=b[k]; w=1)); concat(r, w) }

Formula

Sum_{k = 1..A038573(n+1)} T(n, k) = n+1.
T(n, 1) = A006519(n+1).
T(n, A048896(n)) = A080079(n+1).
T(2^k-1, 1) = 2^k for any k >= 0.