A348652 For any nonnegative number n with base-13 expansion Sum_{k >= 0} d_k*13^k, a(n) is the real part of Sum_{k >= 0} g(d_k)*(3+2*i)^k where g(0) = 0, and g(1+u+3*v) = (1+u*i)*i^v for any u = 0..2 and v = 0..3 (where i denotes the imaginary unit); see A348653 for the imaginary part.
0, 1, 1, 1, 0, -1, -2, -1, -1, -1, 0, 1, 2, 3, 4, 4, 4, 3, 2, 1, 2, 2, 2, 3, 4, 5, 1, 2, 2, 2, 1, 0, -1, 0, 0, 0, 1, 2, 3, -1, 0, 0, 0, -1, -2, -3, -2, -2, -2, -1, 0, 1, -2, -1, -1, -1, -2, -3, -4, -3, -3, -3, -2, -1, 0, -5, -4, -4, -4, -5, -6, -7, -6, -6, -6
Offset: 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..2197
- Stephen K. Lucas, Base 2 + i with digit set {0, +/-1, +/-i}, ResearchGate (October 2021).
- Rémy Sigrist, Colored representation of f for n = 0..13^5-1 in the complex plane (the hue is function of n)
Programs
-
PARI
g(d) = { if (d==0, 0, (1+I*((d-1)%3))*I^((d-1)\3)) } a(n) = real(subst(Pol([g(d)|d<-digits(n, 13)]), 'x, 3+2*I))
Formula
a(13^k) = A121622(k).
Comments