A348653 For any nonnegative number n with base-13 expansion Sum_{k >= 0} d_k*13^k, a(n) is the imaginary part of Sum_{k >= 0} g(d_k)*(3+2*i)^k where g(0) = 0, and g(1+u+3*v) = (1+u*i)*i^v for any u = 0..2 and v = 0..3 (where i denotes the imaginary unit); see A348652 for the real part.
0, 0, 1, 2, 1, 1, 1, 0, -1, -2, -1, -1, -1, 2, 2, 3, 4, 3, 3, 3, 2, 1, 0, 1, 1, 1, 5, 5, 6, 7, 6, 6, 6, 5, 4, 3, 4, 4, 4, 8, 8, 9, 10, 9, 9, 9, 8, 7, 6, 7, 7, 7, 3, 3, 4, 5, 4, 4, 4, 3, 2, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 2, 1, 0, -1, 0, 0, 0, -1, -1, 0, 1, 0, 0
Offset: 0
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..2197
- Stephen K. Lucas, Base 2 + i with digit set {0, +/-1, +/-i}, ResearchGate (October 2021).
- Rémy Sigrist, Colored representation of f for n = 0..13^5-1 in the complex plane (the hue is function of n)
Programs
-
PARI
g(d) = { if (d==0, 0, (1+I*((d-1)%3))*I^((d-1)\3)) } a(n) = imag(subst(Pol([g(d)|d<-digits(n, 13)]), 'x, 3+2*I))
Formula
abs(a(13^k)) = A188982(k).
Comments