cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348658 Numbers whose numerator and denominator of the harmonic mean of their divisors are both Fibonacci numbers.

This page as a plain text file.
%I A348658 #12 Oct 28 2021 19:20:18
%S A348658 1,3,5,6,15,21,28,140,182,496,546,672,918,1890,2016,4005,4590,24384,
%T A348658 52780,55860,68200,84812,90090,105664,145782,186992,204600,381654,
%U A348658 728910,907680,1655400,2302344,2862405,3828009,3926832,5959440,21059220,33550336,33839988,42325920
%N A348658 Numbers whose numerator and denominator of the harmonic mean of their divisors are both Fibonacci numbers.
%C A348658 Terms that also Fibonacci numbers are 1, 3, 5, 21, and no more below Fibonacci(300).
%e A348658 3 is a term since the harmonic mean of its divisors is 3/2 = Fibonacci(4)/Fibonacci(3).
%e A348658 15 is a term since the harmonic mean of its divisors is 5/2 = Fibonacci(5)/Fibonacci(3).
%t A348658 fibQ[n_] := Or @@ IntegerQ /@ Sqrt[{5 n^2 - 4, 5 n^2 + 4}]; h[n_] := DivisorSigma[0, n]/DivisorSigma[-1, n]; q[n_] := fibQ[Numerator[(hn = h[n])]] && fibQ[Denominator[hn]]; Select[Range[1000], q]
%o A348658 (Python)
%o A348658 from itertools import islice
%o A348658 from sympy import integer_nthroot, gcd, divisor_sigma
%o A348658 def A348658(): # generator of terms
%o A348658     k = 1
%o A348658     while True:
%o A348658         a, b = divisor_sigma(k), divisor_sigma(k,0)*k
%o A348658         c = gcd(a,b)
%o A348658         n1, n2 = 5*(a//c)**2-4, 5*(b//c)**2-4
%o A348658         if (integer_nthroot(n1,2)[1] or integer_nthroot(n1+8,2)[1]) and (integer_nthroot(n2,2)[1] or integer_nthroot(n2+8,2)[1]):
%o A348658             yield k
%o A348658         k += 1
%o A348658 A348658_list = list(islice(A348658(),10)) # _Chai Wah Wu_, Oct 28 2021
%Y A348658 Cf. A000045, A099377, A099378.
%Y A348658 Similar sequences: A074266, A123193, A272412, A272440, A348659.
%K A348658 nonn
%O A348658 1,2
%A A348658 _Amiram Eldar_, Oct 28 2021