A348664 Numbers whose binary expansion is not rich.
203, 211, 300, 308, 333, 357, 395, 406, 407, 419, 422, 423, 459, 467, 556, 564, 600, 601, 604, 616, 617, 628, 653, 666, 667, 669, 690, 709, 714, 715, 723, 741, 779, 787, 790, 791, 803, 811, 812, 813, 814, 815, 820, 835, 838, 839, 844, 845, 846, 847, 851, 869
Offset: 1
Examples
For n = 203: - the binary expansion of 203 is "11001011" and has 8 binary digits, - we have the following 8 palindromes: "", "0", "1", "00", "11", "010", "101", "1001" - so 203 is not rich, and belongs to this sequence. For n = 204: - the binary expansion of 204 is "11001100" and has 8 binary digits, - we have the following 9 palindromes: "", "0", "1", "00", "11", "0110", "1001", "001100", "110011" - so 204 is rich, and does not belong to this sequence.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@1000,Length@Select[Union[Subsequences[s=IntegerDigits[#,2]]],PalindromeQ]<=Length@s&] (* Giorgos Kalogeropoulos, Oct 29 2021 *)
-
PARI
is(n) = { my (b=binary(n), p=select(w->w==Vecrev(w), setbinop((i,j)->b[i..j],[1..#b]))); #b!=#p }
-
Python
def ispal(s): return s == s[::-1] def ok(n): s = bin(n)[2:] return len(s) >= 1 + len(set(s[i:j] for i in range(len(s)) for j in range(i+1, len(s)+1) if ispal(s[i:j]))) print([k for k in range(870) if ok(k)]) # Michael S. Branicky, Oct 29 2021
Comments