This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348666 #17 Feb 02 2022 07:25:09 %S A348666 1,1,2,5,15,49,166,577,2050,7414,27201,100984,378651,1431901,5454718, %T A348666 20912754,80630085,312430832,1216045522,4752132953,18638125275, %U A348666 73340870891,289463959745,1145612705905,4545478673125,18077348646721,72048928923617,287733587217552,1151233484320195 %N A348666 a(n) is the number of quiddities of 3-periodic dissections of (n + 2)-gons. %C A348666 See Conley-Ovsienko paper, p. 6. %C A348666 a(0) = 1 by convention. %H A348666 Vaclav Kotesovec, <a href="/A348666/b348666.txt">Table of n, a(n) for n = 0..1000</a> %H A348666 Charles H. Conley and Valentin Ovsienko, <a href="https://arxiv.org/abs/2107.01234">Quiddities of polygon dissections and the Conway-Coxeter frieze equation</a>, arXiv:2107.01234 [math.CO], 2021. %H A348666 Charles H Conley and Valentin Ovsienko, <a href="https://arxiv.org/abs/2202.00269">Counting quiddities of polygon dissections</a>, arXiv:2202.00269 [math.CO], 2021. %H A348666 Vaclav Kotesovec, <a href="/A348666/a348666.txt">Recurrence (of order 12)</a> %F A348666 a(n) = Sum_{k=0..n/3} Sum_{s=0..k} ((3*(k-s) + 2)/(n-s+1)) * binomial(n-3*k+s-2,s) * binomial(2*n-3*k-s-1,n-3*k-1). %F A348666 a(n) ~ c * d^n / n^(3/2), where d = 4.21429839439676340483426656814177802445... is the root of the equation 4 - 12*d^2 - 8*d^3 + 12*d^4 - 20*d^5 + d^7 = 0 and c = 0.590856549086828350357357054105900401452384216047617779361986537... - _Vaclav Kotesovec_, Nov 04 2021 %t A348666 {1}~Join~Array[Sum[(3 (k - s) + 2)/(# - s + 1)*Binomial[# - 3 k + s - 2, s]*Binomial[2 # - 3 k - s - 1, # - 3 k - 1], {k, 0, #/3}, {s, 0, k}] &, 29] %Y A348666 Cf. A218251. %K A348666 nonn,easy %O A348666 0,3 %A A348666 _Michael De Vlieger_, Oct 28 2021