cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348677 a(n) is the difference between A262275(n) and the next lower prime.

This page as a plain text file.
%I A348677 #64 Jun 11 2023 02:59:03
%S A348677 1,4,4,4,6,4,2,14,6,10,12,2,6,2,4,8,4,4,6,6,6,10,4,6,4,10,2,14,14,8,
%T A348677 10,2,18,8,8,4,10,4,8,12,6,14,2,2,2,8,12,6,10,10,12,10,8,2,2,4,6,6,16,
%U A348677 14,6,6,2,10,6,2,8,6,20,2,8,28,6,16,2,6,2,10,6,22,4,6,4,14,6,2
%N A348677 a(n) is the difference between A262275(n) and the next lower prime.
%C A348677 This sequence can be used as an alternate method of approximating the prime-counting function pi(n).
%H A348677 Alois P. Heinz, <a href="/A348677/b348677.txt">Table of n, a(n) for n = 1..10000</a>
%H A348677 Michael P. May, <a href="https://doi.org/10.35834/2020/3202158">Properties of Higher-Order Prime Number Sequences</a>, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and <a href="https://arxiv.org/abs/2108.04662">arXiv version</a>, arXiv:2108.04662 [math.NT], 2021.
%H A348677 Michael P. May, <a href="https://arxiv.org/abs/2112.08941">Approximating the Prime Counting Function via an Operation on a Unique Prime Number Subsequence</a>, arXiv:2112.08941 [math.GM], 2021.
%H A348677 Michael P. May, <a href="https://doi.org/10.35834/2023/3501105">Relationship Between the Prime-Counting Function and a Unique Prime Number Sequence</a>, Missouri J. Math. Sci. (2023), Vol. 35, No. 1, 105-116.
%F A348677 a(n) = p_p'(n) - p_(p'(n) - 1), where p' is a prime number in the sequence A333242, p_p' is a prime number with index in A333242 (forms the prime number sequence A262275), and p_(p'(n)-1) is a prime number which is the next lower prime than those in A262275.
%F A348677 a(n) = A001223(A000720(A262275(n)) - 1).
%F A348677 a(n) = A262275(n) - A151799(A262275(n)). - _Alois P. Heinz_, Jan 06 2022
%e A348677 For n = 3, a(3) = 17 - 13 = 4.
%p A348677 b:= proc(n) option remember;
%p A348677        `if`(isprime(n), 1+b(numtheory[pi](n)), 0)
%p A348677     end:
%p A348677 g:= proc(n) option remember; local p; p:= g(n-1);
%p A348677       do p:= nextprime(p);
%p A348677          if b(p)::even then break fi
%p A348677       od; p
%p A348677     end: g(1):=3:
%p A348677 a:= n-> (t-> t-prevprime(t))(g(n)):
%p A348677 seq(a(n), n=1..86);  # _Alois P. Heinz_, Jan 06 2022
%t A348677 fQ[n_]:=If[!PrimeQ[n]||(PrimeQ[n]&&FreeQ[lst,PrimePi[n]]),AppendTo[lst,n]];k=2;lst={1};While[k<10000000,fQ@k;k++];tab1=Select[lst,PrimeQ]
%t A348677 lowerP[n_]:=Module[{m}, m=n;While[!PrimeQ[m-1],m--]; m-1]
%t A348677 tab2=lowerP/@tab1
%t A348677 tab3=tab1-tab2
%Y A348677 Cf. A151799, A262275, A333242.
%K A348677 nonn
%O A348677 1,2
%A A348677 _Michael P. May_, Oct 30 2021