A348678 Triangle read by rows, T(n, k) = denominator([x^k] M(n, x)) where M(n,x) are the Mandelbrot-Larsen polynomials defined in A347928.
1, 1, 2, 1, 4, 8, 1, 1, 8, 16, 1, 8, 32, 32, 128, 1, 1, 16, 64, 64, 256, 1, 1, 32, 128, 256, 512, 1024, 1, 1, 1, 64, 256, 512, 1024, 2048, 1, 16, 128, 256, 2048, 64, 4096, 4096, 32768, 1, 1, 32, 256, 512, 4096, 1024, 8192, 8192, 65536
Offset: 0
Examples
Triangle starts: [0] 1 [1] 1, 2 [2] 1, 4, 8 [3] 1, 1, 8, 16 [4] 1, 8, 32, 32, 128 [5] 1, 1, 16, 64, 64, 256 [6] 1, 1, 32, 128, 256, 512, 1024 [7] 1, 1, 1, 64, 256, 512, 1024, 2048 [8] 1, 16, 128, 256, 2048, 64, 4096, 4096, 32768 [9] 1, 1, 32, 256, 512, 4096, 1024, 8192, 8192, 65536
Links
- Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Trans., Vol. 1, No. 1, Article 14037 (July 2021).
- Michael Larsen, Multiplicative series, modular forms, and Mandelbrot polynomials, in: Mathematics of Computation 90.327 (Sept. 2020), pp. 345-377. Preprint: arXiv:1908.09974 [math.NT], 2019.
Crossrefs
Programs
-
Maple
# Polynomials M are defined in A347928. T := (n, k) -> denom(coeff(M(n, x), x, k)): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;