This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348679 #6 Oct 29 2021 11:59:30 %S A348679 0,0,1,0,1,1,0,0,1,1,0,1,3,3,5,0,0,1,5,5,7,0,0,3,13,21,35,21,0,0,0,5, %T A348679 25,45,63,33,0,1,7,21,245,7,385,231,429,0,0,1,9,45,555,129,819,429, %U A348679 715,0,0,3,45,55,1155,2695,2387,3465,6435,2431 %N A348679 Triangle read by rows, T(n, k) = numerator([x^k] M(n, x)) where M(n,x) are the Mandelbrot-Larsen polynomials defined in A347928. %H A348679 Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, <a href="https://doi.org/10.5206/mt.v1i1.14037">Some Facts and Conjectures about Mandelbrot Polynomials</a>, Maple Trans., Vol. 1, No. 1, Article 14037 (July 2021). %H A348679 Michael Larsen, <a href="https://doi.org/10.1090/mcom/3564">Multiplicative series, modular forms, and Mandelbrot polynomials</a>, in: Mathematics of Computation 90.327 (Sept. 2020), pp. 345-377. Preprint: <a href="https://arxiv.org/abs/1908.09974">arXiv:1908.09974</a> [math.NT], 2019. %e A348679 Triangle read by rows: %e A348679 [0] 0 %e A348679 [1] 0, 1 %e A348679 [2] 0, 1, 1 %e A348679 [3] 0, 0, 1, 1 %e A348679 [4] 0, 1, 3, 3, 5 %e A348679 [5] 0, 0, 1, 5, 5, 7 %e A348679 [6] 0, 0, 3, 13, 21, 35, 21 %e A348679 [7] 0, 0, 0, 5, 25, 45, 63, 33 %e A348679 [8] 0, 1, 7, 21, 245, 7, 385, 231, 429 %e A348679 [9] 0, 0, 1, 9, 45, 555, 129, 819, 429, 715 %p A348679 # Polynomials M are defined in A347928. %p A348679 T := (n, k) -> numer(coeff(M(n, x), x, k)): %p A348679 for n from 0 to 9 do seq(T(n, k), k = 0..n) od; %Y A348679 T(n, n) = A098597(n). %Y A348679 Cf. A348678 (denominators), A347928. %K A348679 nonn,tabl,frac %O A348679 0,13 %A A348679 _Peter Luschny_, Oct 29 2021