This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348699 #24 Jun 26 2025 07:34:48 %S A348699 23,37,53,73,127,137,157,173,223,227,229,233,239,251,257,263,271,277, %T A348699 283,293,307,313,317,331,337,347,353,359,367,373,379,383,397,433,457, %U A348699 503,521,523,547,557,563,571,577,587,593,653,673,677,727,733,739,743,751,757,773,787,797 %N A348699 Primes with a prime number of prime digits. %H A348699 Jens Ahlström, <a href="/A348699/b348699.txt">Table of n, a(n) for n = 1..5853</a> (all terms < 10^5) %H A348699 Hackerearth, <a href="https://www.hackerearth.com/problem/algorithm/optimus-prime-2/">Optimus prime</a> %t A348699 Select[Range[800], And @@ PrimeQ[{#, Count[IntegerDigits[#], _?PrimeQ]}] &] (* _Amiram Eldar_, Nov 04 2021 *) %o A348699 (Python) %o A348699 from sympy import isprime as i %o A348699 from sympy import primerange as p %o A348699 print([x for x in p(1, 800) if i(len([d for d in str(x) if i(int(d))]))]) %o A348699 (Python) %o A348699 from sympy import isprime %o A348699 def ok(n): return isprime(n) and isprime(sum(1 for d in str(n) if d in "2357")) %o A348699 print([k for k in range(800) if ok(k)]) # _Michael S. Branicky_, Jun 26 2025 %Y A348699 Intersection of A000040 and A092619. %Y A348699 Cf. A217090. %K A348699 base,easy,nonn %O A348699 1,1 %A A348699 _Jens Ahlström_, Oct 30 2021