cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348713 Numbers whose divisors can be partitioned into two disjoint sets with equal arithmetic mean.

Original entry on oeis.org

6, 20, 24, 30, 42, 48, 54, 56, 60, 66, 70, 72, 78, 84, 88, 90, 96, 102, 108, 114, 120, 126, 132, 135, 138, 140, 150, 156, 160, 168, 174, 180, 186, 190, 192, 196, 198, 200, 204, 210, 216, 220, 222, 224, 228, 230, 234, 240, 246, 252, 258, 260, 264, 270, 273, 276
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2021

Keywords

Comments

The arithmetic mean of each of the two subsets is equal to the arithmetic mean of all the divisors of the number.
Also, numbers whose divisors can be partitioned into two disjoint sets with equal harmonic mean. This definition is equivalent since the harmonic mean of a subset {d_i} of the divisors of k is equal to k/, where is the arithmetic mean over the complementary divisors k/d_i.

Examples

			6 is a term since its set of divisors, {1, 2, 3, 6}, can be partitioned into the two disjoint sets, {3} and {1, 2, 6}, whose arithmetic means are both 3.
		

Crossrefs

A347063 is a subsequence.

Programs

  • Mathematica
    q[n_] := Module[{d = Divisors[n], nd, m, s, subs, ans = False}, nd = Length[d]; m = Plus @@ d/nd; subs = Subsets[d]; Do[s = subs[[k]]; If[0 < Length[s] < nd && Mean[s] == m, ans = True; Break[]], {k, 1, Length[subs]}]; ans]; Select[Range[300], q]