cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348723 Decimal expansion of the positive root of Shanks' simplest cubic associated with the prime p = 19.

This page as a plain text file.
%I A348723 #13 Nov 08 2021 16:32:20
%S A348723 3,5,0,7,0,1,8,6,4,4,0,9,2,9,7,6,2,9,8,6,6,0,7,9,9,9,2,3,7,1,5,6,7,8,
%T A348723 0,2,9,0,2,5,9,7,6,4,2,0,1,3,0,3,6,9,6,7,5,1,2,6,5,8,2,1,7,8,3,5,2,9,
%U A348723 7,6,9,6,4,8,2,1,0,1,9,9,7,1,5,7,6,0,0,3,4,0,8,6,1,9,4,0,9,0,7,1,5
%N A348723 Decimal expansion of the positive root of Shanks' simplest cubic associated with the prime p = 19.
%C A348723 Let a be an integer and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1.
%C A348723 In the case a = 2, corresponding to the prime p = 19, Shanks' cyclic cubic is x^3 - 2*x^2 - 5*x - 1 of discriminant 19^2. The polynomial has three real roots, one positive and two negative. Let r_0 = 3.507018644... denote the positive root. The other roots are r_1 = - 1/(1 + r_0) = - 0.2218761622... and r_2 = - 1/(1 + r_1) = - 1.2851424818.... See A348724 and A348725.
%C A348723 The quadratic mapping z -> z^2 - 3*z - 2 cyclically permutes the roots of the cubic: the mapping z -> - z^2 + 2*z + 4 gives the inverse cyclic permutation of the three roots.
%C A348723 The algebraic number field Q(r_0) is a totally real cubic field of class number 1 and discriminant equal to 19^2. The Galois group of Q(r_0) over Q is a cyclic group of order 3. The real numbers r_0 and 1 + r_0 are two independent fundamental units of the field Q(r_0). See Shanks. In Cusick and Schoenfeld, r_0 and r_1 (denoted there by E_1 and E_2) are taken as a fundamental pair of units (see case 9 in the table).
%H A348723 T. W. Cusick and Lowell Schoenfeld, <a href="https://doi.org/10.1090/S0025-5718-1987-0866105-8">A table of fundamental pairs of units in totally real cubic fields</a>, Math. Comp. 48 (1987), 147-158
%H A348723 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0352049-8">The simplest cubic fields</a>, Math. Comp., 28 (1974), 1137-1152
%F A348723 r_0 = 2*(cos(4*Pi/19) + cos(6*Pi/19) - cos(9*Pi/19)) + 1.
%F A348723 r_0 = sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)/(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)).
%F A348723 r_0 = 1/(8*cos(4*Pi/19)*cos(6*Pi/19)*cos(9*Pi/19)).
%F A348723 r_0 = Product_{n >= 0} (19*n+4)*(19*n+6)*(19*n+9)*(19*n+10)*(19*n+13)*(19*n+15)/( (19*n+1)*(19*n+7)*(19*n+8)*(19*n+11)*(19*n+12)*(19*n+18) ).
%F A348723 r_1 = - sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)/(sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)) = - 1/(8*cos(2*Pi/19)*cos(3*Pi/19)*cos(5*Pi/19)).
%F A348723 r_1 = - Product_{n >= 0} (19*n+2)*(19*n+3)*(19*n+5)*(19*n+14)*(19*n+16)*(19*n+17)/( (19*n+4)*(19*n+6)*(19*n+9)*(19*n+10)*(19*n+13)*(19*n+15) ).
%F A348723 r_2 = - sin(Pi/19)*sin(7*Pi/19)* sin(8*Pi/19)/(sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)) = - 1/(8*cos(Pi/19)*cos(7*Pi/19)*cos(8*Pi/19)).
%F A348723 r_2 = - Product_{n >= 0} (19*n+1)*(19*n+7)*(19*n+8)*(19*n+11)*(19*n+12)*(19*n+18)/( (19*n+2)*(19*n+3)*(19*n+5)*(19*n+14)*(19*n+16)*(19*n+17) ).
%F A348723 Let z = exp(2*Pi*i/19). Then
%F A348723 r_0 = abs( (1 - z^4)*(1 - z^6)*(1 - z^9)/((1 - z)*(1 - z^7)*(1 - z^8)) ).
%F A348723 Note: C = {1, 7, 8, 11, 12, 18} is the subgroup of nonzero cubic residues in the finite field Z_19 with cosets 2*C = {2, 3, 5, 14, 16, 17} and 4*C = {4, 6, 9, 10, 13, 15}.
%e A348723 3.50701864409297629866079992371567802902597642013036...
%p A348723 evalf(sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)/(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)), 100);
%t A348723 RealDigits[Sin[4*Pi/19]*Sin[6*Pi/19]*Sin[9*Pi/19]/(Sin[Pi/19]*Sin[7*Pi/19]*Sin[8*Pi/19]), 10, 100][[1]] (* _Amiram Eldar_, Nov 08 2021 *)
%o A348723 (PARI) sin(4*Pi/19)*sin(6*Pi/19)*sin(9*Pi/19)/(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)) \\ _Michel Marcus_, Nov 08 2021
%Y A348723 Cf. A005471, A160389, A255240, A255241, A255249, A348720 - A348729.
%K A348723 nonn,cons,easy
%O A348723 1,1
%A A348723 _Peter Bala_, Oct 31 2021