cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348725 Decimal expansion of the absolute value of one of the negative roots of Shanks' simplest cubic associated with the prime p = 19.

This page as a plain text file.
%I A348725 #15 Nov 08 2021 16:32:34
%S A348725 1,2,8,5,1,4,2,4,8,1,8,2,9,7,8,5,3,6,4,3,9,4,1,1,9,8,7,3,5,3,0,6,2,7,
%T A348725 4,1,3,4,2,6,7,8,0,9,2,5,7,2,2,6,1,6,9,4,1,5,2,5,6,6,7,0,6,9,8,6,1,9,
%U A348725 9,1,7,2,1,9,7,9,5,2,3,0,5,0,7,0,3,8,0,4,2,3,8,9,7,4,2,9,8,7,3,9
%N A348725 Decimal expansion of the absolute value of one of the negative roots of Shanks' simplest cubic associated with the prime p = 19.
%C A348725 Let a be an integer and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1.
%C A348725 In the case a = 2, corresponding to the prime p = 19, Shanks' cyclic cubic is x^3 - 2*x^2 - 5*x - 1 of discriminant 19^2. The polynomial has three real roots, one positive and two negative. Let r_0 = 3.507018644... denote the positive root. The other roots are r_1 = - 1/(1 + r_0) = - 0.2218761622... and r_2 = - 1/(1 + r_1) = - 1.2851424818.... See A348723 (r_0) and A348724 (|r_1|).
%C A348725 Here we consider the absolute value of the root r_2.
%H A348725 T. W. Cusick and Lowell Schoenfeld, <a href="https://doi.org/10.1090/S0025-5718-1987-0866105-8">A table of fundamental pairs of units in totally real cubic fields</a>, Math. Comp. 48 (1987), 147-158 (see case 9 in the table)
%H A348725 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0352049-8">The simplest cubic fields</a>, Math. Comp., 28 (1974), 1137-1152
%F A348725 |r_2| = sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)/(sin(2*Pi/19)*sin(3*Pi/19)* sin(5*Pi/19)) = 1/(8*cos(Pi/19)*cos(7*Pi/19)*cos(8*Pi/19)).
%F A348725 |r_2| = Product_{n >= 0} (19*n+1)*(19*n+7)*(19*n+8)*(19*n+11)*(19*n+12)*(19*n+18)/ ( (19*n+2)*(19*n+3)*(19*n+5)*(19*n+14)*(19*n+16)*(19*n+17) ).
%F A348725 |r_2| = 2*(cos(Pi/19) + cos(7*Pi/19) - cos(8*Pi/19)) - 1.
%F A348725 Let z = exp(2*Pi*i/19). Then
%F A348725 |r_2| = abs( (1 - z)*(1 - z^7)*(1 - z^8)/((1 - z^2)*(1 - z^3)*(1 - z^5)) ).
%F A348725 Note: C = {1, 7, 8, 11, 12, 18} is the subgroup of nonzero cubic residues in the finite field Z_19 with cosets 2*C = {2, 3, 5, 14, 16, 17} and 4*C = {4, 6, 9, 10, 13, 15}.
%F A348725 Equals -1 + (-1)^(1/19) + (-1)^(7/19) - (-1)^(8/19) + (-1)^(11/19) - (-1)^(12/19) - (-1)^(18/19). - _Peter Luschny_, Nov 08 2021
%e A348725 1.28514248182978536439411987353062741342678092572261 ...
%p A348725 evalf(sin(Pi/19)*sin(7*Pi/19)*sin(8*Pi/19)/(sin(2*Pi/19)*sin(3*Pi/19)*sin(5*Pi/19)), 100);
%t A348725 RealDigits[Sin[Pi/19]*Sin[7*Pi/19]*Sin[8*Pi/19]/(Sin[2*Pi/19]*Sin[3*Pi/19]*Sin[5*Pi/19]), 10, 100][[1]] (* _Amiram Eldar_, Nov 08 2021 *)
%Y A348725 Cf. A005471, A160389, A255240, A255241, A255249, A348720 - A348729.
%K A348725 nonn,cons,easy
%O A348725 1,2
%A A348725 _Peter Bala_, Oct 31 2021