cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348726 Decimal expansion of the positive root of Shanks' simplest cubic associated with the prime p = 37.

This page as a plain text file.
%I A348726 #17 Nov 08 2021 16:32:44
%S A348726 5,3,4,4,7,1,2,3,6,5,4,5,1,8,3,4,9,6,3,1,6,5,6,9,1,4,1,8,8,4,6,9,8,6,
%T A348726 4,6,9,9,5,8,6,9,5,8,7,0,8,1,4,2,2,4,9,4,6,3,9,6,3,6,1,7,5,6,0,1,5,4,
%U A348726 5,3,8,5,7,2,1,1,5,7,7,0,1,2,1,6,8,7,6,6,8,2,1,9,1,4,2,4,3,4,1,6,9
%N A348726 Decimal expansion of the positive root of Shanks' simplest cubic associated with the prime p = 37.
%C A348726 Let a be an integer and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1. The polynomial has three real roots, one positive and two negative.
%C A348726 In the case a = 4, corresponding to the prime p = 37, the three real roots of the cubic x^3 - 4*x^2 - 7*x - 1 in descending order are r_0 = 5.3447123654..., r_1 = - 0.1576115578... and r_2 = - 1.1871008076.... Here we consider the positive root r_0. See A348727 (|r_1|) and A348728 (|r_2|) for the other two roots.
%C A348726 The algebraic number field Q(r_0) is a totally real cubic field with class number 1 and discriminant equal to 37^2. The Galois group of Q(r_0) over Q is a cyclic group of order 3. The real numbers r_0 and 1 + r_0 are two independent fundamental units of the field Q(r_0). See Shanks. In Cusick and Schoenfeld, r_0 and r_1 (denoted there by E_1 and E_2) are taken as a fundamental pair of units (see case 37 in the table).
%C A348726 Let R = <1, 6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36> denote the multiplicative subgroup of nonzero cubic residues in the finite field Z_37, with cosets 2*R = {2, 9, 12, 15, 16, 17, 20, 21, 22, 25, 28, 35} and 3*R = {3, 4, 5, 7, 13, 18, 19, 24, 30, 32, 33, 34}.
%C A348726 Define R(k) = sin(k*Pi/37)*sin(6*k*Pi/37)*sin(8*k*Pi/37)*sin(10*k*Pi/37)* sin(11*k*Pi/37)*sin(14*k*Pi/37). Then the three roots of the cubic x^3 - 4*x^2 - 7*x - 1 are
%C A348726 r_0 = - R(2)/R(3) = 5.3447123654..., r_1 = - R(1)/R(2) = - 0.1576115578... and r_2 = R(3)/R(1) = - 1.1871008076....
%C A348726 The linear fractional transformation z -> - 1/(1 + z) cyclically permutes the three roots of the cubic polynomial.
%C A348726 The quadratic mapping z -> z^2 - 5*z - 2 also cyclically permutes the roots of the cubic: the inverse cyclic permutation of the roots is given by z -> - z^2 + 4*z + 6.
%H A348726 T. W. Cusick and Lowell Schoenfeld, <a href="https://doi.org/10.1090/S0025-5718-1987-0866105-8">A table of fundamental pairs of units in totally real cubic fields</a>, Math. Comp. 48 (1987), 147-158
%H A348726 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0352049-8">The simplest cubic fields</a>, Math. Comp., 28 (1974), 1137-1152
%F A348726 r_0 = 1 + 2*(cos(3*Pi/37) - cos(4*Pi/37) + cos(5*Pi/37) + cos(7*Pi/37) + cos(13*Pi/37) - cos(18*Pi/37)).
%F A348726 r_0 = |R(2)/R(3)| = Product_{n >= 0} ( Product_{k in the coset 2*R} (37*n+k) )/( Product_{k in the coset 3*R} (37*n + k) );
%F A348726 |r_1| = |R(1)/R(2)| = Product_{n >= 0} ( Product_{k in the group R} (37*n+k) )/( Product_{k in the coset 2*R} (37*n + k) );
%F A348726 |r_2| = |R(3)/R(1)| = Product_{n >= 0} ( Product_{k in the coset 3*R} (37*n+k) )/( Product_{k in the group R} (37*n + k) ).
%F A348726 R(2)/R(1) + R(2)/R(3) = 1 = R(3)/R(2) - R(3)/R(1) = R(1)/R(2) - R(1)/R(3).
%e A348726 5.34471236545183496316569141884698646995869587081422 ...
%p A348726 R := k -> sin(k*Pi/37)*sin(6*k*Pi/37)*sin(8*k*Pi/37)*
%p A348726 sin(10*k*Pi/37)*sin(11*k*Pi/37)*sin(14*k*Pi/37): evalf(-R(2)/R(3), 100);
%t A348726 f[ks_,m_] := Product[Sin[k*Pi/m], {k,ks}]; ks = {1, 6, 8, 10, 11, 14}; RealDigits[f[2*ks,37]/f[3*ks,37], 10, 100][[1]] (* _Amiram Eldar_, Nov 08 2021 *)
%Y A348726 Cf. A005471, A160389, A255240, A255241, A255249, A348720 - A348729.
%K A348726 nonn,cons,easy
%O A348726 1,1
%A A348726 _Peter Bala_, Oct 31 2021