cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348727 Decimal expansion of the absolute value of one of the negative roots of Shanks' simplest cubic associated with the prime p = 37.

This page as a plain text file.
%I A348727 #14 Nov 08 2021 16:32:51
%S A348727 1,5,7,6,1,1,5,5,7,8,4,5,4,2,5,7,6,1,4,8,2,3,2,1,3,2,0,1,2,4,2,2,5,3,
%T A348727 7,0,6,0,5,8,4,8,7,1,9,1,3,0,5,5,9,9,3,0,3,6,8,4,9,1,3,0,5,4,1,7,0,9,
%U A348727 6,0,5,3,1,4,9,3,3,6,4,6,6,5,1,8,1,8,3,0,6,2,1,0,4,2
%N A348727 Decimal expansion of the absolute value of one of the negative roots of Shanks' simplest cubic associated with the prime p = 37.
%C A348727 Let a be an integer and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1. The polynomial has three real roots, one positive and two negative.
%C A348727 In the case a = 4, corresponding to the prime p = 37, the three real roots of the cubic x^3 - 4*x^2 - 7*x - 1 in descending order are r_0 = 5.344712365..., r_1 = - 0.1576115578... and r_2 = - 1.187100807.... Here we consider the absolute value of the root r_1 (|E_2| in the notation of Cusick and Schoenfeld). See A348726 (r_0) and A348728 (|r_2|) for the other two roots.
%H A348727 T. W. Cusick and Lowell Schoenfeld, <a href="https://doi.org/10.1090/S0025-5718-1987-0866105-8">A table of fundamental pairs of units in totally real cubic fields</a>, Math. Comp. 48 (1987), 147-158 (see case 37 in the table)
%H A348727 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0352049-8">The simplest cubic fields</a>, Math. Comp., 28 (1974), 1137-1152
%F A348727 |r_1| = 1/((2^6)*cos(Pi/37)*cos(6*Pi/37)*cos(8*Pi/37)*cos(10*Pi/37)*cos(11*Pi/37)* cos(14*Pi/37)).
%F A348727 |r_1| = 2*(cos(2*Pi/37) - cos(9*Pi/37) + cos(12*Pi/37) - cos(15*Pi/37) + cos(16*Pi/37) - cos(17*Pi/37)) - 1.
%F A348727 |r_1| = R(1)/R(2), where R(k) = sin(k*Pi/37)*sin(6*k*Pi/37)* sin(8*k*Pi/37)*sin(10*k*Pi/37)*sin(11*k*Pi/37)*sin(14*k*Pi/37).
%F A348727 Let R = <1, 6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36> denote the multiplicative subgroup of nonzero cubic residues in the finite field Z_37, with cosets 2*R = {2, 9, 12, 15, 16, 17, 20, 21, 22, 25, 28, 35} and 3*R = {3, 4, 5, 7, 13, 18, 19, 24, 30, 32, 33, 34}. Then constant equals
%F A348727 Product_{n >= 0} ( Product_{k in the coset 2*R} (37*n+k) )/( Product_{k in the group R} (37*n + k) ).
%e A348727 0.15761155784542576148232132012422537060584871913055 ...
%p A348727 R := k -> sin(k*Pi/37)*sin(6*k*Pi/37)*sin(8*k*Pi/37)*sin(10*k*Pi/37)* sin(11*k*Pi/37)*sin(14*k*Pi/37): evalf(R(1)/R(2), 100);
%t A348727 f[ks_,m_] := Product[Sin[k*Pi/m], {k,ks}]; ks = {1, 6, 8, 10, 11, 14}; RealDigits[f[ks,37]/f[2*ks,37], 10, 100][[1]] (* _Amiram Eldar_, Nov 08 2021 *)
%Y A348727 Cf. A005471, A160389, A255240, A255241, A255249, A348720 - A348729.
%K A348727 nonn,cons,easy
%O A348727 0,2
%A A348727 _Peter Bala_, Oct 31 2021