cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348728 Decimal expansion of the absolute value of one of the negative roots of Shanks' simplest cubic associated with the prime p = 37.

This page as a plain text file.
%I A348728 #15 Nov 08 2021 16:32:58
%S A348728 1,1,8,7,1,0,0,8,0,7,6,0,6,4,0,9,2,0,1,6,8,3,3,7,0,0,9,8,7,2,2,7,6,1,
%T A348728 0,9,9,3,5,2,8,4,7,1,5,1,6,8,3,6,6,5,0,1,6,0,2,7,8,7,0,4,5,0,5,9,8,3,
%U A348728 5,7,8,0,4,0,6,2,2,4,0,5,4,5,6,5,0,5,8,3,7,5,9,8,1,0,0,3,4,5,1,2
%N A348728 Decimal expansion of the absolute value of one of the negative roots of Shanks' simplest cubic associated with the prime p = 37.
%C A348728 Let a be an integer and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1. The polynomial has three real roots, one positive and two negative.
%C A348728 In the case a = 4, corresponding to the prime p = 37, the three real roots of the cubic x^3 - 4*x^2 - 7*x - 1 in descending order are r_0 = 5.3447123654..., r_1 = - 0.1576115578... and r_2 = - 1.1871008076....
%C A348728 Here we consider the absolute value of the root r_2. See A348726 (r_0) and A348727 (|r_1|) for the other two roots.
%H A348728 T. W. Cusick and Lowell Schoenfeld, <a href="https://doi.org/10.1090/S0025-5718-1987-0866105-8">A table of fundamental pairs of units in totally real cubic fields</a>, Math. Comp. 48 (1987), 147-158 (see case 37 in the table)
%H A348728 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0352049-8">The simplest cubic fields</a>, Math. Comp., 28 (1974), 1137-1152
%F A348728 |r_2| = 2*(-cos(Pi/37) + cos(6*Pi/37) + cos(8*Pi/37) + cos(10*Pi/37) - cos(11*Pi/37) + cos(14*Pi/37)) - 1.
%F A348728 |r_2| = |R(3)/R(1)|, where R(k) = sin(k*Pi/37)*sin(6*k*Pi/37)*sin(8*k*Pi/37)* sin(10*k*Pi/37)*sin(11*k*Pi/37)*sin(14*k*Pi/37).
%F A348728 Let R = <1, 6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36> denote the multiplicative subgroup of nonzero cubic residues in the finite field Z_37, with cosets 2*R = {2, 9, 12, 15, 16, 17, 20, 21, 22, 25, 28, 35} and 3*R = {3, 4, 5, 7, 13, 18, 19, 24, 30, 32, 33, 34}. Then the constant equals Product_{n >= 0} ( Product_{k in the coset 3*R} (37*n+k) )/( Product_{k in the group R} (37*n + k) ).
%e A348728 1.18710080760640920168337009872276109935284715168366...
%p A348728 R := k -> sin(k*Pi/37)*sin(6*k*Pi/37)*sin(8*k*Pi/37)*sin(10*k*Pi/37)* sin(11*k*Pi/37)*sin(14*k*Pi/37): evalf(-R(3)/R(1), 100);
%t A348728 f[ks_,m_] := Product[Sin[k*Pi/m], {k,ks}]; ks = {1, 6, 8, 10, 11, 14}; RealDigits[f[3*ks,37]/f[ks,37], 10, 100][[1]] (* _Amiram Eldar_, Nov 08 2021 *)
%Y A348728 Cf. A005471, A160389, A255240, A255241, A255249, A348720 - A348729.
%K A348728 nonn,cons,easy
%O A348728 1,3
%A A348728 _Peter Bala_, Oct 31 2021