This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348729 #14 Feb 04 2025 15:18:38 %S A348729 1,2,1,5,8,2,4,6,6,6,8,7,1,2,1,3,5,3,8,2,6,0,0,3,7,1,2,4,7,0,0,0,4,2, %T A348729 9,8,4,5,2,4,6,5,8,4,8,0,4,7,0,7,4,8,0,5,6,7,1,2,2,8,4,2,9,4,5,7,3,5, %U A348729 6,6,6,5,2,8,4,6,4,9,3,4,5,1,0,4,8,7,7,2,2,6,8,2,6,5,9,1,3,2,5,3,3,4,4 %N A348729 Decimal expansion of the positive root of Shanks's simplest cubic associated with the prime p = 163. %C A348729 Let a be a natural number and let p be a prime of the form a^2 + 3*a + 9 (see A005471). Shanks introduced a family of cyclic cubic fields generated by the roots of the polynomial x^3 - a*x^2 - (a + 3)*x - 1. The polynomial has three real roots, one positive and two negative. In the case a = 11, corresponding to the prime p = 163, the three real roots of Shanks' cubic x^3 - 11*x^2 - 14*x - 1 in descending order are r_0 = 12.1582466687..., r_1 = - -0.0759979672... and r_2 = -1.0822487014.... Here we consider the positive root r_1. %C A348729 The linear fractional transformation z -> - 1/(1 + z) cyclically permutes the three roots r_0, r_1 and r_2: the quadratic mapping z -> z^2 - 12*z - 2 also cyclically permutes the roots. %C A348729 The algebraic number field Q(r_0) is a totally real cubic field with class number 4 and discriminant equal to 163^2. The Galois group of Q(r_0) over Q is a cyclic group of order 3. The real numbers r_0 and 1 + r_0 are two independent fundamental units of the field Q(r_0). See Shanks. %H A348729 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1974-0352049-8">The simplest cubic fields</a>, Math. Comp., 28 (1974), 1137-1152. %H A348729 <a href="/index/Al#algebraic_03">Index entries for algebraic numbers, degree 3</a>. %F A348729 Let R = {1, 5, 6, 8, ..., 155, 157, 158, 162} denote the multiplicative subgroup of nonzero cubic residues in the finite field Z_163, with cosets 2*R = {2, 7, 9, 10, ..., 153, 154, 156, 161} and 3*R = {3, 4, 11, 14, ..., 149, 152, 159, 160}. %F A348729 Define P(k) = Product_{r in R, r <= (163-1)/2} sin(k*r*Pi/163). The three roots of the cubic x^3 - 11*x^2 - 14*x - 1 are %F A348729 r_0 = sqrt(P(3)/P(1)) = 12.1582466687.... %F A348729 r_1 = -sqrt(P(1)/P(2)) = -0.0759979672.... %F A348729 r_2 = -sqrt(P(2)/P(3)) = -1.0822487014.... %e A348729 12.15824666871213538260037124700042984524658480470748 ... %p A348729 R := convert([seq(mod(n^3, 163), n = 1..162)], set): %p A348729 P := k -> sqrt( mul(sin((1/163)*k*r*Pi), r in R) ): %p A348729 evalf(sqrt(P(3)/P(1)), 105); %t A348729 rs = Union@Mod[Range[1, 162]^3, 163]; f[k_] := Sqrt[Product[Sin[k*r*Pi/163], {r, rs}]]; RealDigits[Sqrt[f[3]/f[1]], 10, 100][[1]] (* _Amiram Eldar_, Nov 08 2021 *) %o A348729 (PARI) polrootsreal(x^3 - 11*x^2 - 14*x - 1)[3] \\ _Charles R Greathouse IV_, Feb 04 2025 %Y A348729 Cf. A005471, A160389, A255240, A255241, A255249, A348720 - A348728. %K A348729 nonn,cons,easy %O A348729 2,2 %A A348729 _Peter Bala_, Nov 06 2021