cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348831 Positive numbers whose square starts and ends with exactly 44, and no 444.

This page as a plain text file.
%I A348831 #32 Sep 08 2022 08:46:26
%S A348831 212,2112,6638,6662,6688,20988,21012,21062,21112,21138,21162,21188,
%T A348831 21212,66338,66362,66388,66412,66438,66488,66512,66562,66588,66612,
%U A348831 66712,66738,66762,66788,66812,66838,66862,66888,66912,66938,66988,67012,67062,209762,209788
%N A348831 Positive numbers whose square starts and ends with exactly 44, and no 444.
%C A348831 When a square starts and ends with digits dd, then dd is necessarily 44.
%C A348831 The last 2 digits of terms are either 12, 38, 62 or 88.
%C A348831 From _Marius A. Burtea_, Nov 09 2021 : (Start)
%C A348831 The sequence is infinite because the numbers 212, 2112, 21112, ..., (19*10^k + 8) / 9, k >= 3, are terms because the remainder when dividing by 1000 is 544 and 445*10^(2*k - 2) < ((19*10^k + 8) / 9)^2 < 447*10^(2*k - 2), k >= 3.
%C A348831 Also 6638, 66338, 663338, 6633338, 66333338, 663333338, 6633333338, ..., (199*10^k + 14) / 3, k >= 2, are terms and have no digits 0, because their squares are: 44063044, 4400730244, 4400730244, 440017302244, 44001173022244, 4400111730222244, 440011117302222244, ... (End)
%e A348831 212 is a term since 212^2 = 44944.
%e A348831 662 is not a term since 662^2 = 438244.
%e A348831 668 is not a term since 668^2 = 446224.
%e A348831 2108 is not a term since 2108^2 = 4443664.
%e A348831 21038 is not a term since 21038^2 = 442597444.
%e A348831 21088 is not a term since 21088^2 = 444703744.
%t A348831 Select[Range[10, 300000], (d = IntegerDigits[#^2])[[1 ;; 2]] ==  d[[-2 ;; -1]] == {4, 4} && d[[-3]] != 4 && d[[3]] != 4 &] (* _Amiram Eldar_, Nov 08 2021 *)
%o A348831 (Magma) fd:=func<n|Seqint(Intseq(n*n)) mod 100 eq 44 and Seqint(Intseq(n*n)) mod 1000 ne 444>; fs:=func<n|Seqint(Reverse(Intseq(n*n))) mod 100 eq 44 and Seqint(Reverse(Intseq(n*n))) mod 1000 ne 444>; [n:n in [1..210000]|fd(n) and fs(n)]; // _Marius A. Burtea_, Nov 08 2021
%o A348831 (Python)
%o A348831 from itertools import count, takewhile
%o A348831 def ok(n):
%o A348831   s = str(n*n); return len(s.rstrip("4")) == len(s.lstrip("4")) == len(s)-2
%o A348831 def aupto(N):
%o A348831   ends = [12, 38, 62, 88]
%o A348831   r = takewhile(lambda x: x<=N, (100*i+d for i in count(0) for d in ends))
%o A348831   return [k for k in r if ok(k)]
%o A348831 print(aupto(209788)) # _Michael S. Branicky_, Nov 08 2021
%Y A348831 Cf. A017317.
%Y A348831 Subsequence of A045858, A273375, A305719 and A346774.
%Y A348831 Similar to: A348488 (d=4), this sequence (dd=44), A348832 (ddd=444).
%K A348831 nonn,base
%O A348831 1,1
%A A348831 _Bernard Schott_, Nov 08 2021