cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348832 Positive numbers whose square starts and ends with exactly 444.

This page as a plain text file.
%I A348832 #34 Sep 08 2022 08:46:26
%S A348832 666462,666538,666962,667038,2107462,2107538,2107962,2108038,2108462,
%T A348832 2108538,2108962,2109038,2109462,6663462,6663538,6663962,6664038,
%U A348832 6664462,6664538,6664962,6665038,6665462,6665538,6665962,6666038,6667462,6667538,6667962,6668038,6668462,6668538,6668962
%N A348832 Positive numbers whose square starts and ends with exactly 444.
%C A348832 The 1st problem of British Mathematical Olympiad (BMO) in 1995 (see link) asked to find all positive integers whose squares end in three 4’s (A039685); this sequence is the subsequence of these integers whose squares also start in precisely three 4's (no four or more 4's). Two such infinite subsequences are proposed below.
%C A348832 When a square starts and ends with digits ddd, then ddd is necessarily 444.
%C A348832 The first 3 digits of terms are either 210, 666 or 667, while the last 3 digits are either 038, 462, 538 or 962 (see examples).
%C A348832 From _Marius A. Burtea_, Nov 09 2021 : (Start)
%C A348832 The sequence is infinite because the numbers 667038, 6670038, 66700038, 667000038, ..., 667*10^k + 38, k >= 3, are terms because are square 444939693444, 44489406921444, 4448895069201444, 444889050692001444, 44488900506920001444, ...
%C A348832 Also, 6663462, 66633462, 666333462, 6663333462, ..., (1999*10^k + 386) / 3, k >= 4, are terms and have no digits 0, because their squares are 44401725825444, 4440018258105444, 444000282580905444, 44400012825808905444,
%C A348832 4440001128258088905444, ... (End)
%D A348832 A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Pb 1 pp. 55 and 95-96 (1995)
%H A348832 British Mathematical Olympiad 1975, <a href="https://bmos.ukmt.org.uk/home/bmo1-1995.pdf">Problem 1</a>.
%e A348832 666462 is a term since 666462^2 = 444171597444.
%e A348832 21038 is not a term since 21038^2 = 442597444.
%t A348832 Select[Range[100, 7*10^6], (d = IntegerDigits[#^2])[[1 ;; 3]] == d[[-3 ;; -1]] == {4, 4, 4} && d[[-4]] != 4 && d[[4]] != 4 &] (* _Amiram Eldar_, Nov 09 2021 *)
%o A348832 (Python)
%o A348832 from itertools import count, takewhile
%o A348832 def ok(n):
%o A348832   s = str(n*n); return len(s.rstrip("4")) == len(s.lstrip("4")) == len(s)-3
%o A348832 def aupto(N):
%o A348832   ends = [38, 462, 538, 962]
%o A348832   r = takewhile(lambda x: x<=N, (1000*i+d for i in count(0) for d in ends))
%o A348832   return [k for k in r if ok(k)]
%o A348832 print(aupto(6668962)) # _Michael S. Branicky_, Nov 09 2021
%o A348832 (Magma) fd:=func<n|Seqint(Intseq(n*n)) mod 1000 eq 444 and Seqint(Intseq(n*n)) mod 10000 ne 4444>; fs:=func<n|Seqint(Reverse(Intseq(n*n))) mod 1000 eq 444 and Seqint(Reverse(Intseq(n*n))) mod 10000 ne 4444>; [n:n in [1..6700000]|fd(n) and fs(n)]; // _Marius A. Burtea_, Nov 09 2021
%Y A348832 Cf. A017317, A328886.
%Y A348832 Subsequence of A039685, A045858, A273375, A305719, A346892.
%Y A348832 Similar to: A348488 (d=4), A348831 (dd=44), this sequence (ddd=444).
%K A348832 nonn,base
%O A348832 1,1
%A A348832 _Bernard Schott_, Nov 09 2021