A348843 Irregular triangle read by rows: row n gives for the Julian Green game with n cards labeled 1, 2, ..., n, for n >= 2, the number of games if the first removed card has label K = 2*k, for k = 1, 2, ..., floor(n/2).
1, 1, 3, 3, 5, 5, 12, 11, 12, 16, 15, 16, 33, 39, 36, 39, 49, 58, 51, 58, 72, 103, 88, 103, 86, 82, 118, 98, 118, 96, 379, 569, 521, 616, 528, 442, 420, 628, 578, 682, 569, 488, 514, 921, 881, 977, 785, 739, 785, 1092, 1986, 1753, 2102, 2036, 1557, 1634
Offset: 2
Examples
The irregular triangle T(n, k) begins: n\ k 1 2 3 4 5 6 7 8 9 10 ... K 2 4 6 8 10 12 14 16 18 29 ... ------------------------------------------------------------------- 2: 1 3: 1 4: 3 3 5: 5 5 6: 12 11 12 7: 16 15 16 8: 33 39 36 39 9: 49 58 51 58 10: 72 103 88 103 86 11: 82 118 98 118 96 12: 379 569 521 616 528 442 13: 420 628 578 682 569 488 14: 514 921 881 977 785 739 785 15: 1092 1986 1753 2102 2036 1557 1634 16: 2382 4594 4569 5666 5214 3933 3927 5666 17: 2525 4864 4835 6024 5474 4143 4070 6024 18: 7430 17220 16208 21258 18760 15158 13053 21258 17544 19: 7811 18087 16995 22418 19553 15860 13434 22418 18422 20: 28538 57489 74728 90526 86225 70069 54336 90526 80493 70164 ... ------------------------------------------------------------------- n = 5: The 5 games starting with card labeled 2 are [2, 1, 3], [2, 1, 4], [2, 1, 5], [2, 4, 1, 3], [2, 4, 1, 5], and the 5 games starting with number 4 are: [4, 1, 2], [4, 1, 3], [4, 1, 5], [4, 2, 1, 3], [4, 2, 1, 5]. ------------------------------------------------------------------
Links
- See A348842.
Comments