cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348845 Part two of the trisection of A017101: a(n) = 11 + 24*n.

Original entry on oeis.org

11, 35, 59, 83, 107, 131, 155, 179, 203, 227, 251, 275, 299, 323, 347, 371, 395, 419, 443, 467, 491, 515, 539, 563, 587, 611, 635, 659, 683, 707, 731, 755, 779, 803, 827, 851, 875, 899, 923, 947, 971, 995, 1019, 1043, 1067
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2021

Keywords

Comments

The trisection of A017101 = {3 + 8*k}A017077%20=%20%7B3*(1%20+%2012*n)%7D">{k>=0} gives 3*A017077 = {3*(1 + 12*n)}{n>=0}, {a(n)}A350051%20=%20%7B19%20+%2024*n%7D">{n >= 0} and A350051 = {19 + 24*n}{n>=0}. These three sequences are congruent to 3 modulo 8 and to 3, 5, and 1 modulo 6, respectively.

Crossrefs

Programs

  • Mathematica
    24 * Range[0, 44] + 11 (* Amiram Eldar, Dec 18 2021 *)

Formula

a(n) = 11 + 24*n = 11 + A008606(n), for n >= 0
a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -13, a(0) = 11.
G.f.: (11 + 13*x)/(1-x)^2.
E.g.f.: (11 + 24*x)*exp(x).