A348845 Part two of the trisection of A017101: a(n) = 11 + 24*n.
11, 35, 59, 83, 107, 131, 155, 179, 203, 227, 251, 275, 299, 323, 347, 371, 395, 419, 443, 467, 491, 515, 539, 563, 587, 611, 635, 659, 683, 707, 731, 755, 779, 803, 827, 851, 875, 899, 923, 947, 971, 995, 1019, 1043, 1067
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
24 * Range[0, 44] + 11 (* Amiram Eldar, Dec 18 2021 *)
Formula
a(n) = 11 + 24*n = 11 + A008606(n), for n >= 0
a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -13, a(0) = 11.
G.f.: (11 + 13*x)/(1-x)^2.
E.g.f.: (11 + 24*x)*exp(x).
Comments