cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348853 Delete any least significant 0's from the Zeckendorf representation of n, leaving its "odd" part.

This page as a plain text file.
%I A348853 #45 Mar 22 2025 07:01:58
%S A348853 1,1,1,4,1,6,4,1,9,6,4,12,1,14,9,6,17,4,19,12,1,22,14,9,25,6,27,17,4,
%T A348853 30,19,12,33,1,35,22,14,38,9,40,25,6,43,27,17,46,4,48,30,19,51,12,53,
%U A348853 33,1,56,35,22,59,14,61,38,9,64,40,25,67,6,69,43,27,72
%N A348853 Delete any least significant 0's from the Zeckendorf representation of n, leaving its "odd" part.
%C A348853 Terms are odd Zeckendorfs A003622 and the fixed points are where n is odd already so that a(n) = n iff n is in A003622.
%C A348853 A139764(n) is the least significant "10..00" part of n so Zeckendorf multiplication n = A101646(a(n), A139764(n)).
%C A348853 The equivalent delete least significant 0's in binary is A000265 so that conversion to Fibbinary (A003714) and back gives a(n) = A022290(A000265(A003714(n))).
%C A348853 a(n) = 1 iff n is a Fibonacci number >= 1 (A000045) since they are Zeckendorf 100..00.
%C A348853 a(n) = 4 iff n is a Lucas number >= 4 (A000032) since they are Zeckendorf 10100..00 which reduces to 101.
%C A348853 In the Wythoff array A035513, a(n) is the term in column 0 of the row containing n, and hence the formula below using row number A019586 to select which of the odds (column 0) is a(n).
%H A348853 Kevin Ryde, <a href="/A348853/b348853.txt">Table of n, a(n) for n = 1..10000</a>
%H A348853 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a>.
%F A348853 a(n) = n if A003849(n)=1, otherwise a(n) = a(A005206(n)) = a(A319433(n)).
%F A348853 a(n) = A003622(A019586(n) + 1).
%F A348853 Sum_{k=1..n} a(k) ~ n^2/(2*phi), where phi is the golden ratio (A001622). - _Amiram Eldar_, Feb 17 2024
%e A348853 n    = 81 = Zeckendorf 101001000.
%e A348853 a(n) = 19 = Zeckendorf 101001.
%o A348853 (PARI) my(phi=quadgen(5)); a(n) = my(q,r); while([q,r]=divrem(n+2,phi); r<1, n=q-1); n;
%Y A348853 Cf. A189920 (Zeckendorf digits), A003622 (odds), A003849 (final digit), A005206, A319433 (shift down).
%Y A348853 Cf. A000045 (Fibonacci), A000032 (Lucas).
%Y A348853 Cf. A035513 (Wythoff array), A019586 (row number).
%Y A348853 Cf. A003714 (Fibbinary), A022290 (its inverse).
%Y A348853 In other bases: A000265 (binary), A004151 (decimal).
%Y A348853 Cf. A001622, A101646, A139764.
%K A348853 base,easy,nonn
%O A348853 1,4
%A A348853 _Kevin Ryde_, Nov 14 2021