cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A348864 a(n) is the number of multiplications required to compute the permanent of general n X n matrices using trellis method with normalization.

This page as a plain text file.
%I A348864 #11 Mar 06 2022 08:33:16
%S A348864 0,4,12,32,70,162,350,800,1746,3950,8602,19164,41392,90846,194490,
%T A348864 421568,895594,1922022,4057298,8638580,18140640,38378054,80244562,
%U A348864 168877272,351827100,737208082,1531123830,3196464740,6621247636,13779365430,28477354354,59102191488,121898268954
%N A348864 a(n) is the number of multiplications required to compute the permanent of general n X n matrices using trellis method with normalization.
%H A348864 Han Mao Kiah, Alexander Vardy and Hanwen Yao, <a href="https://arxiv.org/abs/2107.07377">Computing Permanents on a Trellis</a>, arXiv:2107.07377 [cs.IT], 2021.
%F A348864 a(n) = n*2^(n-1) - ceiling(n/2)*binomial(n, floor(n/2)) + n^2 - n (see Theorem 6, p. 11 in Kiah et al.).
%F A348864 a(n) = A001787(n) - A100071(n) + A002378(n-1).
%F A348864 O.g.f.: x*(1/(1 - 2*x)^2 + 2*x/(1 - x)^3 - 1/((1 - 2*x)*sqrt(1 - 4*x^2))).
%F A348864 E.g.f.: exp(x)*x*(exp(x) + x) - (1 + x)*BesselI(1, 2*x) - x*BesselI(2, 2*x).
%F A348864 D-finite with recurrence (n-1)*(n-2)*(n-4)*(3*n-23)*a(n) -3*(n -2)*(3*n^3-34*n^2+91*n-20)*a(n-1) -2*(n-1)*(n-3)*(3*n^2 -47*n+164)*a(n-2) +12*(3*n-22)*(n-1)*(n-2)*(n-4)*a(n-3) -8*(3*n-20)*(n-1)*(n-2)*(n-3)*a(n-4)=0. - _R. J. Mathar_, Mar 06 2022
%t A348864 a[n_]:=n 2^(n-1)-Ceiling[n/2]Binomial[n,Floor[n/2]]+n^2-n; Array[a,33]
%o A348864 (PARI) a(n) = n*2^(n-1) - ceil(n/2)*binomial(n, floor(n/2)) + n^2 - n; \\ _Michel Marcus_, Nov 03 2021
%Y A348864 Cf. A001787, A002378, A058877, A100071.
%K A348864 nonn
%O A348864 1,2
%A A348864 _Stefano Spezia_, Nov 02 2021