A348868 Numbers whose numerator and denominator of the harmonic mean of their divisors are both 5-smooth numbers.
1, 2, 3, 5, 6, 8, 10, 15, 24, 27, 28, 30, 40, 54, 84, 120, 135, 140, 216, 224, 270, 420, 496, 672, 756, 775, 819, 1080, 1120, 1488, 1550, 1638, 2176, 2325, 2480, 3360, 3780, 4095, 4650, 6048, 6200, 6528, 6552, 7440, 8190, 10880, 11375, 13392, 18600, 20925, 21700
Offset: 1
Keywords
Examples
8 is a term since the harmonic mean of its divisors is 32/15 and both 32 = 2^5 and 15 = 3*5 are 5-smooth numbers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..234
Crossrefs
Programs
-
Mathematica
smQ[n_] := n == 2^IntegerExponent[n, 2] * 3^IntegerExponent[n, 3] * 5^IntegerExponent[n, 5]; h[n_] := DivisorSigma[0, n]/DivisorSigma[-1, n]; q[n_] := smQ[Numerator[(hn = h[n])]] && smQ[Denominator[hn]]; Select[Range[22000], q]
Comments