This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348893 #43 Oct 23 2023 11:23:52 %S A348893 35,14,14,20,35,70,154,364,910,2380,6460,18088,52003,152950,458850, %T A348893 1400700,4342170,13646820,43421700,139704600,454039950,1489251036, %U A348893 4925984196,16419947320,55124108860,186281471320,633357002488,2165672331088,7444498638115,25717358931670,89254363351090 %N A348893 a(n) = 840*(2*n)!/((n + 4)!*n!). %F A348893 O.g.f: (140*z^3 - 70*z^2 + 14*z - 1 + (1 - 4*z)^(7/2))/(2*z^4). %F A348893 E.g.f: 64*exp(2*z)*((-z^3 - 1/2*z^2 - 1/4*z - 3/32)*BesselI(1,2*z) + BesselI(0,2*z)*z*(z^2 + 1/4*z + 3/32))/z^3. %F A348893 O.g.f. g(z) satisfies z^4*g(z)^2 + (-140*z^3 + 70*z^2 - 14*z + 1)*g(z) + 4096*z^3 - 2268*z^2 + 476*z - 35 = 0; %F A348893 a(n) = Integral_{x=0..4} x^n*64*(1 - x/4)^(7/2)/(Pi*sqrt(x)). This is the integral representation as the n-th moment of a positive function on [0, 4]. The representation is unique. %F A348893 Remark: this sequence is not monotonically growing with n, as a(0) > a(1) = a(2) < a(3) < a(4)... . %F A348893 From _Peter Luschny_, Nov 03 2021: (Start) %F A348893 a(n) = 14*A007272(n)/(n + 4). %F A348893 a(n) ~ 105*4^n*(8*n - 81)/(n^(11/2)*sqrt(Pi)). %F A348893 a(n) = 4^(n + 4)*hypergeom([9/2, 1/2 - n], [11/2], 1) / (9*Pi). (End) %F A348893 a(n) = (-4)^(4 + n)*binomial(7/2, 4 + n)/2. - _Peter Luschny_, Nov 04 2021 %F A348893 From _Peter Bala_, Mar 10 2023: (Start) %F A348893 a(n) = 35*binomial(2*n, n) - 56*binomial(2*n, n + 1) + 28*binomial(2*n, n + 2) - 8*binomial(2*n, n + 3) + binomial(2*n, n + 4). Thus this sequence is integral. %F A348893 7 divides a(n) except when n == 3 (mod 7). %F A348893 P-recursive: (n + 4)*a(n) = 2*(2*n - 1)*a(n-1) with a(0) = 35. %F A348893 D-finite: the o.g.f. A(x) satisfies the differential equation (1 - 4*x)*A'(x) + (4 - 2*x)*A(x) - 140 = 0, with A(0) = 35. (End) %F A348893 From _Peter Bala_, Mar 11 2023: (Start) %F A348893 a(n) = Sum_{k = 0..3} (-1)^k*4^(3-k)*binomial(3,k)*Catalan(n+k) = 64*Catalan(n) - 48*Catalan(n+1) + 12*Catalan(n+2) - Catalan(n+3), where Catalan(n) = A000108(n). %F A348893 a(n) is odd if n = 2^k - 4, k >= 2, otherwise a(n) is even. (End) %F A348893 From _Amiram Eldar_, Mar 28 2023: (Start) %F A348893 Sum_{n>=0} 1/a(n) = 13/70 + 4*Pi/(81*sqrt(3)). %F A348893 Sum_{n>=0} (-1)^(n+1)/a(n) = 72*log(phi)/(3125*sqrt(5)) - 103/43750, where phi is the golden ratio (A001622). (End) %p A348893 seq(840*(2*n)!/((n + 4)!*n!),n=0..30) %t A348893 a[n_] := 4^(n + 4) Hypergeometric2F1[9/2, 1/2 - n, 11/2, 1] / (9 Pi); %t A348893 Table[a[n], {n, 0, 30}] (* _Peter Luschny_, Nov 03 2021 *) %o A348893 (Sage) %o A348893 def A348893(n): return (-4)^(4 + n)*binomial(7/2, 4 + n)/2 %o A348893 print([A348893(n) for n in range(31)]) # _Peter Luschny_, Nov 04 2021 %o A348893 (PARI) a(n)=35*binomial(2*n,n)/binomial(n+4,4) \\ _Charles R Greathouse IV_, Oct 23 2023 %Y A348893 Row 3 of array A135573. %Y A348893 Cf. A000108, A001622, A007054, A007272, A348898, A348899. %K A348893 nonn,easy %O A348893 0,1 %A A348893 _Karol A. Penson_, Nov 02 2021