A348897 Numbers of the form (x + y)*(x^2 + y^2).
0, 1, 4, 8, 15, 27, 32, 40, 64, 65, 85, 108, 120, 125, 156, 175, 203, 216, 256, 259, 272, 320, 343, 369, 400, 405, 477, 500, 512, 520, 580, 585, 671, 680, 715, 729, 803, 820, 864, 888, 935, 960, 1000, 1080, 1105, 1111, 1157, 1248, 1261, 1331, 1372, 1400, 1417
Offset: 1
Keywords
Examples
1010101 is in this sequence because 1010101 = (100 + 1)*(100^2 + 1^2).
Links
- Peter Luschny, Table of n, a(n) for n = 1..1200
Programs
-
Julia
# Returns the terms less than or equal to b^3. function A348897List(b) b3 = b^3; R = [0] for n in 1:b for k in 0:n a = (n + k) * (n^2 + k^2) a > b3 && break push!(R, a) end end unique!(sort!(R)) end A348897List(12) |> println
-
Maple
# Returns the terms less than or equal to b^3. A348897List := proc(b) local n, k, a, b3, R; b3 := abs(b^3); R := {}; for n from 0 to b do for k from 0 to n do a := (n + k)*(n^2 + k^2); if a > b3 then break fi; R := R union {a}; od od; sort(R) end: A348897List(12);
-
Mathematica
max = 2000; xmax = max^(1/3) // Ceiling; Table[(x + y) (x^2 + y^2), {x, 0, xmax}, {y, x, xmax}] // Flatten // Union // Select[#, # <= max&]& (* Jean-François Alcover, Oct 23 2023 *)
Comments