This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348908 #9 Nov 19 2021 08:12:30 %S A348908 1,8,4,2,6,2,6,7,1,3,5,8,3,8,1,3,5,9,3,9,6,7,5,7,0,6,1,7,5,4,4,3,4,2, %T A348908 2,0,8,7,4,9,6,7,6,0,1,5,2,1,6,3,5,1,3,5,1,5,6,7,5,5,5,0,9,9,2,2,2,2, %U A348908 0,1,6,6,6,2,7,9,1,8,9,0,1,6,4,5,0,1,8,1,6 %N A348908 Decimal expansion of the positive real root of x^4 - 3*x - 6. %C A348908 This constant appears in the upper bounds formula of the peak sidelobe level of Rudin-Shapiro sequences. %H A348908 Tom Høholdt, Helge Elbrønd Jensen and Jørn Justesen, <a href="https://doi.org/10.1109/TIT.1985.1057071">Aperiodic correlations and the merit factor of a class of binary sequences (Corresp.)</a>, in IEEE Transactions on Information Theory, vol. 31, no. 4, pp. 549-552, July 1985; on <a href="https://www.researchgate.net/publication/3084194_Aperiodic_correlations_and_the_merit_factor_of_a_class_of_binary_sequences_Corresp">Research Gate</a>. %H A348908 Daniel J. Katz and Courtney M. van der Linden, <a href="https://arxiv.org/abs/2108.07318">Peak Sidelobe Level and Peak Crosscorrelation of Golay-Rudin-Shapiro Sequences</a>, arXiv:2108.07318 [cs.IT], 2021. See Theorem 1.2, p. 4. %H A348908 Stefano Spezia, <a href="/A348908/a348908.jpg">Exact form of the constant</a> %F A348908 See the formula in Links section. %e A348908 1.8426267135838135939675706175443422... %t A348908 First[RealDigits[N[Root[x^4-3x-6,x,2],89]]] %o A348908 (PARI) solve(x=0, 2, x^4 - 3*x - 6) \\ _Michel Marcus_, Nov 03 2021 %Y A348908 Cf. A020985, A020987, A348909. %K A348908 nonn,cons %O A348908 1,2 %A A348908 _Stefano Spezia_, Nov 03 2021