This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348916 #18 Nov 09 2021 15:01:53 %S A348916 0,1,2,1,1,0,-1,-1,-2,-1,-1,0,1,4,5,6,5,5,4,3,3,2,3,3,4,5,7,8,9,8,8,7, %T A348916 6,6,5,6,6,7,8,3,4,5,4,4,3,2,2,1,2,2,3,4,2,3,4,3,3,2,1,1,0,1,1,2,3,-1, %U A348916 0,1,0,0,-1,-2,-2,-3,-2,-2,-1,0,-5,-4,-3 %N A348916 a(n) is the "real" part of f(n) = Sum_{k >= 0} g(d_k) * (4 + w)^k where g(0) = 0 and g(1 + u + 2*v) = (2 + w)^u * (1 + w)^v for any u = 0..1 and v = 0..5, Sum_{k >= 0} d_k * 13^k is the base-13 representation of n and w = -1/2 + sqrt(-3)/2 is a primitive cube root of unity; sequence A348917 gives "w" parts. %C A348916 For any Eisenstein integer z = u + v*w (where u and v are integers), we call u the "real" part of z and v the "w" part of z. %C A348916 This sequence combines features of A334492 and of A348652. %C A348916 It appears that f defines a bijection from the nonnegative integers to the Eisenstein integers. %C A348916 The following diagram depicts g(d) for d = 0..12: %C A348916 "w" axis %C A348916 \ %C A348916 . . %C A348916 \ 4 %C A348916 \ %C A348916 . . . . %C A348916 6 5 \ 3 2 %C A348916 \ %C A348916 ._____._____._____._____._ "real" axis %C A348916 7 0 \ 1 %C A348916 \ %C A348916 . . . . %C A348916 8 9 11 \ 12 %C A348916 \ %C A348916 . . %C A348916 10 \ %H A348916 Rémy Sigrist, <a href="/A348916/b348916.txt">Table of n, a(n) for n = 0..2196</a> %H A348916 Joerg Arndt, <a href="/A348916/a348916_1.png">Representation of a similar construction</a> %H A348916 Rémy Sigrist, <a href="/A348916/a348916.png">Colored representation of f for n = 0..13^5-1 in the complex plane</a> (the hue is function of n) %H A348916 Rémy Sigrist, <a href="/A348916/a348916.gp.txt">PARI program for A348916</a> %H A348916 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_integer">Eisenstein integer</a> %o A348916 (PARI) See Links section. %Y A348916 Cf. A334492, A348652, A348917. %K A348916 sign,base %O A348916 0,3 %A A348916 _Rémy Sigrist_, Nov 03 2021