This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A348917 #15 Nov 09 2021 15:02:00 %S A348917 0,0,1,1,2,1,1,0,-1,-1,-2,-1,-1,1,1,2,2,3,2,2,1,0,0,-1,0,0,5,5,6,6,7, %T A348917 6,6,5,4,4,3,4,4,4,4,5,5,6,5,5,4,3,3,2,3,3,7,7,8,8,9,8,8,7,6,6,5,6,6, %U A348917 3,3,4,4,5,4,4,3,2,2,1,2,2,2,2,3,3,4,3,3 %N A348917 a(n) is the "w" part of f(n) = Sum_{k >= 0} g(d_k) * (4 + w)^k where g(0) = 0 and g(1 + u + 2*v) = (2 + w)^u * (1 + w)^v for any u = 0..1 and v = 0..5, Sum_{k >= 0} d_k * 13^k is the base-13 representation of n and w = -1/2 + sqrt(-3)/2 is a primitive cube root of unity; sequence A348916 gives "real" parts. %C A348917 For any Eisenstein integer z = u + v*w (where u and v are integers), we call u the "real" part of z and v the "w" part of z. %C A348917 This sequence combines features of A334493 and of A348653. %C A348917 It appears that f defines a bijection from the nonnegative integers to the Eisenstein integers. %C A348917 The following diagram depicts g(d) for d = 0..12: %C A348917 "w" axis %C A348917 \ %C A348917 . . %C A348917 \ 4 %C A348917 \ %C A348917 . . . . %C A348917 6 5 \ 3 2 %C A348917 \ %C A348917 ._____._____._____._____._ "real" axis %C A348917 7 0 \ 1 %C A348917 \ %C A348917 . . . . %C A348917 8 9 11 \ 12 %C A348917 \ %C A348917 . . %C A348917 10 \ %H A348917 Rémy Sigrist, <a href="/A348917/b348917.txt">Table of n, a(n) for n = 0..2196</a> %H A348917 Joerg Arndt, <a href="/A348916/a348916_1.png">Representation of a similar construction</a> %H A348917 Rémy Sigrist, <a href="/A348916/a348916.png">Colored representation of f for n = 0..13^5-1 in the complex plane</a> (the hue is function of n) %H A348917 Rémy Sigrist, <a href="/A348917/a348917.gp.txt">PARI program for A348917</a> %H A348917 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_integer">Eisenstein integer</a> %o A348917 (PARI) See Links section. %Y A348917 Cf. A334493, A348653, A348916. %K A348917 sign,base %O A348917 0,5 %A A348917 _Rémy Sigrist_, Nov 03 2021